論文の概要: Koopman-theoretic Approach for Identification of Exogenous Anomalies in
Nonstationary Time-series Data
- arxiv url: http://arxiv.org/abs/2209.08618v1
- Date: Sun, 18 Sep 2022 17:59:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-20 18:53:44.930643
- Title: Koopman-theoretic Approach for Identification of Exogenous Anomalies in
Nonstationary Time-series Data
- Title(参考訳): koopman-theoretic approachによる非定常時系列データにおける外因性異常の同定
- Authors: Alex Mallen, Christoph A. Keller, J. Nathan Kutz
- Abstract要約: 多次元時系列データ中の異常を分類する一般的な方法を構築する。
本研究では,地球大気汚染モニタリングの重要な課題について,提案手法を実証する。
このシステムは、新型コロナウイルス(COVID-19)のロックダウンや山火事などにより、空気質の局所的な異常を検出することに成功した。
- 参考スコア(独自算出の注目度): 3.050919759387984
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In many scenarios, it is necessary to monitor a complex system via a
time-series of observations and determine when anomalous exogenous events have
occurred so that relevant actions can be taken. Determining whether current
observations are abnormal is challenging. It requires learning an extrapolative
probabilistic model of the dynamics from historical data, and using a limited
number of current observations to make a classification. We leverage recent
advances in long-term probabilistic forecasting, namely {\em Deep Probabilistic
Koopman}, to build a general method for classifying anomalies in
multi-dimensional time-series data. We also show how to utilize models with
domain knowledge of the dynamics to reduce type I and type II error. We
demonstrate our proposed method on the important real-world task of global
atmospheric pollution monitoring, integrating it with NASA's Global Earth
System Model. The system successfully detects localized anomalies in air
quality due to events such as COVID-19 lockdowns and wildfires.
- Abstract(参考訳): 多くのシナリオでは、観測の時系列を通して複雑なシステムを監視し、異常な外因性事象がいつ発生したかを判断し、関連するアクションを取る必要がある。
現在の観察が異常かどうかを決定することは難しい。
歴史的データから力学の推測的確率モデルを学び、限られた数の現在の観測を使って分類を行う必要がある。
多次元時系列データに異常を分類する一般的な方法を構築するために, 長期確率的予測の最近の進歩, すなわち, 深い確率的koopman} を活用する。
また,タイプIとタイプIIのエラーを低減するために,ドメイン知識を持つ動的モデルの活用方法を示す。
我々は,nasaの地球システムモデルと統合し,地球大気汚染モニタリングの重要な実世界課題に関する提案手法を実証する。
このシステムは、新型コロナウイルス(COVID-19)のロックダウンや山火事などにより、空気質の局所的な異常を検出することに成功した。
関連論文リスト
- Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
本稿では,グラフ時間過程と異常スコアラを用いて異常を検出するGST-Proという新しいフレームワークを提案する。
実験結果から,GST-Pro法は時系列データ中の異常を効果的に検出し,最先端の手法より優れていることがわかった。
論文 参考訳(メタデータ) (2024-01-11T10:10:16Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - MadSGM: Multivariate Anomaly Detection with Score-based Generative
Models [22.296610226476542]
スコアベース生成モデルに基づく時系列異常検出器MadSGMを提案する。
5つの実世界のベンチマークデータセットの実験は、MadSGMが最も堅牢で正確な予測を達成していることを示している。
論文 参考訳(メタデータ) (2023-08-29T07:04:50Z) - Time series anomaly detection with reconstruction-based state-space
models [10.085100442558828]
本稿では,時系列データに対する新しい教師なし異常検出手法を提案する。
長い短期記憶(LSTM)ベースのエンコーダデコーダを用いて観測空間と潜時空間のマッピングを行う。
潜在空間の正規化は、通常のサンプルの状態に制約を課し、マハラノビス距離を用いて異常レベルを評価する。
論文 参考訳(メタデータ) (2023-03-06T17:52:35Z) - Deep Learning for Time Series Anomaly Detection: A Survey [53.83593870825628]
時系列異常検出は、製造業や医療を含む幅広い研究分野や応用に応用されている。
時系列の大規模かつ複雑なパターンにより、研究者は異常パターンを検出するための特別な深層学習モデルを開発するようになった。
本調査は,ディープラーニングを用いた構造化および総合的時系列異常検出モデルの提供に焦点を当てる。
論文 参考訳(メタデータ) (2022-11-09T22:40:22Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
我々は、因果的観点から異常検出問題を定式化し、多変量データを生成するための通常の因果的メカニズムに従わない事例として、異常を考察する。
次に、まずデータから因果構造を学習し、次に、あるインスタンスが局所因果機構に対して異常であるかどうかを推定する因果検出手法を提案する。
我々は、実世界のAIOpsアプリケーションに関するケーススタディと同様に、シミュレートされたデータセットとパブリックなデータセットの両方を用いて、私たちのアプローチを評価します。
論文 参考訳(メタデータ) (2022-06-30T06:00:13Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
確率的時系列予測は、その歴史に基づいて将来の分布を推定する。
本稿では,非線形エミッションモデルと遷移モデルとをネットワークによってパラメータ化した,確率的時系列予測のための深部状態空間モデルを提案する。
実験では,我々のモデルが正確かつ鋭い確率予測を生成することを示す。
論文 参考訳(メタデータ) (2021-01-31T06:49:33Z) - LSTM for Model-Based Anomaly Detection in Cyber-Physical Systems [4.020523898765404]
異常検出は、与えられたコンテキストにおけるシステムの通常の振る舞いとは異なるデータを検出するタスクである。
LSTM(Long Short-Term Memory)ニューラルネットワークは、時系列を学習するのに特に有用であることが示されている。
私たちは、人工データと実データに対するアプローチを分析します。
論文 参考訳(メタデータ) (2020-10-29T15:26:08Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z) - ReRe: A Lightweight Real-time Ready-to-Go Anomaly Detection Approach for
Time Series [0.27528170226206433]
本稿では,リアルタイム・レディ・トゥ・ゴー・プロアクティブ・異常検出アルゴリズムReReを紹介する。
ReReは2つの軽量Long Short-Term Memory (LSTM)モデルを使用して、次のデータポイントが異常であるか否かを予測し、共同で判断する。
実世界の時系列データセットに基づく実験は、リアルタイム異常検出におけるReReの優れた性能を示す。
論文 参考訳(メタデータ) (2020-04-05T21:26:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。