Fairness on Synthetic Visual and Thermal Mask Images
- URL: http://arxiv.org/abs/2209.08762v1
- Date: Mon, 19 Sep 2022 05:04:42 GMT
- Title: Fairness on Synthetic Visual and Thermal Mask Images
- Authors: Kenneth Lai, Vlad Shmerko, Svetlana Yanushkevich
- Abstract summary: We study performance and fairness on visual and thermal images and expand the assessment to masked synthetic images.
Using the SpeakingFace and Thermal-Mask dataset, we propose a process to assess fairness on real images and show how the same process can be applied to synthetic images.
- Score: 1.4524096882720263
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we study performance and fairness on visual and thermal images
and expand the assessment to masked synthetic images. Using the SpeakingFace
and Thermal-Mask dataset, we propose a process to assess fairness on real
images and show how the same process can be applied to synthetic images. The
resulting process shows a demographic parity difference of 1.59 for random
guessing and increases to 5.0 when the recognition performance increases to a
precision and recall rate of 99.99\%. We indicate that inherently biased
datasets can deeply impact the fairness of any biometric system. A primary
cause of a biased dataset is the class imbalance due to the data collection
process. To address imbalanced datasets, the classes with fewer samples can be
augmented with synthetic images to generate a more balanced dataset resulting
in less bias when training a machine learning system. For biometric-enabled
systems, fairness is of critical importance, while the related concept of
Equity, Diversity, and Inclusion (EDI) is well suited for the generalization of
fairness in biometrics, in this paper, we focus on the 3 most common
demographic groups age, gender, and ethnicity.
Related papers
- The Impact of Balancing Real and Synthetic Data on Accuracy and Fairness in Face Recognition [10.849598219674132]
We investigate the impact of demographically balanced authentic and synthetic data, both individually and in combination, on the accuracy and fairness of face recognition models.
Our findings emphasize two main points: (i) the increased effectiveness of training data generated by diffusion-based models in enhancing accuracy, whether used alone or combined with subsets of authentic data, and (ii) the minimal impact of incorporating balanced data from pre-trained generative methods on fairness.
arXiv Detail & Related papers (2024-09-04T16:50:48Z) - SDFD: Building a Versatile Synthetic Face Image Dataset with Diverse Attributes [14.966767182001755]
We propose a methodology for generating synthetic face image datasets that capture a broader spectrum of facial diversity.
Specifically, our approach integrates demographics and biometrics but also non-permanent traits like make-up, hairstyle, and accessories.
These prompts guide a state-of-the-art text-to-image model in generating a comprehensive dataset of high-quality realistic images.
arXiv Detail & Related papers (2024-04-26T08:51:31Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
Eye image segmentation is a critical step in eye tracking that has great influence over the final gaze estimate.
We use dimensionality-reduction techniques to measure the overlap between the target eye images and synthetic training data.
Our methods result in robust, improved performance when tackling the discrepancy between simulation and real-world data samples.
arXiv Detail & Related papers (2024-03-23T22:32:06Z) - Classes Are Not Equal: An Empirical Study on Image Recognition Fairness [100.36114135663836]
We experimentally demonstrate that classes are not equal and the fairness issue is prevalent for image classification models across various datasets.
Our findings reveal that models tend to exhibit greater prediction biases for classes that are more challenging to recognize.
Data augmentation and representation learning algorithms improve overall performance by promoting fairness to some degree in image classification.
arXiv Detail & Related papers (2024-02-28T07:54:50Z) - What Should Be Balanced in a "Balanced" Face Recognition Dataset? [8.820019122897154]
Various face image datasets have been proposed as 'fair' or 'balanced' to assess the accuracy of face recognition algorithms across demographics.
It is important to note that the number of identities and images in an evaluation dataset are em not driving factors for 1-to-1 face matching accuracy.
We propose a bias-aware toolkit that facilitates creation of cross-demographic evaluation datasets balanced on factors mentioned in this paper.
arXiv Detail & Related papers (2023-04-17T22:02:03Z) - A Deep Dive into Dataset Imbalance and Bias in Face Identification [49.210042420757894]
Media portrayals often center imbalance as the main source of bias in automated face recognition systems.
Previous studies of data imbalance in FR have focused exclusively on the face verification setting.
This work thoroughly explores the effects of each kind of imbalance possible in face identification, and discuss other factors which may impact bias in this setting.
arXiv Detail & Related papers (2022-03-15T20:23:13Z) - Generation of Non-Deterministic Synthetic Face Datasets Guided by
Identity Priors [19.095368725147367]
We propose a non-deterministic method for generating mated face images by exploiting the well-structured latent space of StyleGAN.
We create a new dataset of synthetic face images (SymFace) consisting of 77,034 samples including 25,919 synthetic IDs.
arXiv Detail & Related papers (2021-12-07T11:08:47Z) - Unravelling the Effect of Image Distortions for Biased Prediction of
Pre-trained Face Recognition Models [86.79402670904338]
We evaluate the performance of four state-of-the-art deep face recognition models in the presence of image distortions.
We have observed that image distortions have a relationship with the performance gap of the model across different subgroups.
arXiv Detail & Related papers (2021-08-14T16:49:05Z) - MultiFair: Multi-Group Fairness in Machine Learning [52.24956510371455]
We study multi-group fairness in machine learning (MultiFair)
We propose a generic end-to-end algorithmic framework to solve it.
Our proposed framework is generalizable to many different settings.
arXiv Detail & Related papers (2021-05-24T02:30:22Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
A growing specter in the rise of machine learning is whether the decisions made by machine learning models are fair.
We present a framework of fair semi-supervised learning in the pre-processing phase, including pseudo labeling to predict labels for unlabeled data.
A theoretical decomposition analysis of bias, variance and noise highlights the different sources of discrimination and the impact they have on fairness in semi-supervised learning.
arXiv Detail & Related papers (2020-09-25T05:48:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.