A Survey of Deep Causal Models and Their Industrial Applications
- URL: http://arxiv.org/abs/2209.08860v6
- Date: Wed, 22 May 2024 06:48:31 GMT
- Title: A Survey of Deep Causal Models and Their Industrial Applications
- Authors: Zongyu Li, Xiaobo Guo, Siwei Qiang,
- Abstract summary: This review mainly focuses on the overview of the deep causal models based on neural networks.
We outline some typical applications of causal effect estimation to industry.
- Score: 5.459987844611099
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The notion of causality assumes a paramount position within the realm of human cognition. Over the past few decades, there has been significant advancement in the domain of causal effect estimation across various disciplines, including but not limited to computer science, medicine, economics, and industrial applications. Given the continous advancements in deep learning methodologies, there has been a notable surge in its utilization for the estimation of causal effects using counterfactual data. Typically, deep causal models map the characteristics of covariates to a representation space and then design various objective functions to estimate counterfactual data unbiasedly. Different from the existing surveys on causal models in machine learning, this review mainly focuses on the overview of the deep causal models based on neural networks, and its core contributions are as follows: 1) we cast insight on a comprehensive overview of deep causal models from both timeline of development and method classification perspectives; 2) we outline some typical applications of causal effect estimation to industry; 3) we also endeavor to present a detailed categorization and analysis on relevant datasets, source codes and experiments.
Related papers
- Smoke and Mirrors in Causal Downstream Tasks [59.90654397037007]
This paper looks at the causal inference task of treatment effect estimation, where the outcome of interest is recorded in high-dimensional observations.
We compare 6 480 models fine-tuned from state-of-the-art visual backbones, and find that the sampling and modeling choices significantly affect the accuracy of the causal estimate.
Our results suggest that future benchmarks should carefully consider real downstream scientific questions, especially causal ones.
arXiv Detail & Related papers (2024-05-27T13:26:34Z) - A Survey on Causal Discovery: Theory and Practice [2.741266294612776]
Causal inference is designed to quantify the underlying relationships that connect a cause to its effect.
In this paper, we explore recent advancements in a unified manner, provide a consistent overview of existing algorithms, report useful tools and data, present real-world applications.
arXiv Detail & Related papers (2023-05-17T08:18:56Z) - Quantify the Causes of Causal Emergence: Critical Conditions of
Uncertainty and Asymmetry in Causal Structure [0.5372002358734439]
Investigation of causal relationships based on statistical and informational theories have posed an interesting and valuable challenge to large-scale models.
This paper introduces a framework for assessing numerical conditions of Causal Emergence as theoretical constraints of its occurrence.
arXiv Detail & Related papers (2022-12-03T06:35:54Z) - Neural Causal Models for Counterfactual Identification and Estimation [62.30444687707919]
We study the evaluation of counterfactual statements through neural models.
First, we show that neural causal models (NCMs) are expressive enough.
Second, we develop an algorithm for simultaneously identifying and estimating counterfactual distributions.
arXiv Detail & Related papers (2022-09-30T18:29:09Z) - Data-Driven Causal Effect Estimation Based on Graphical Causal
Modelling: A Survey [30.115088044583953]
We review data-driven methods on causal effect estimation using graphical causal modelling.
We identify and discuss the challenges faced by data-driven causal effect estimation.
We hope this review will motivate more researchers to design better data-driven methods.
arXiv Detail & Related papers (2022-08-20T03:25:58Z) - Active Bayesian Causal Inference [72.70593653185078]
We propose Active Bayesian Causal Inference (ABCI), a fully-Bayesian active learning framework for integrated causal discovery and reasoning.
ABCI jointly infers a posterior over causal models and queries of interest.
We show that our approach is more data-efficient than several baselines that only focus on learning the full causal graph.
arXiv Detail & Related papers (2022-06-04T22:38:57Z) - Instance-wise or Class-wise? A Tale of Neighbor Shapley for
Concept-based Explanation [37.033629287045784]
Deep neural networks have demonstrated remarkable performance in many data-driven and prediction-oriented applications.
Their most significant drawback is the lack of interpretability, which makes them less attractive in many real-world applications.
arXiv Detail & Related papers (2021-09-03T08:34:37Z) - Towards Causal Representation Learning [96.110881654479]
The two fields of machine learning and graphical causality arose and developed separately.
There is now cross-pollination and increasing interest in both fields to benefit from the advances of the other.
arXiv Detail & Related papers (2021-02-22T15:26:57Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z) - Uncovering the Data-Related Limits of Human Reasoning Research: An
Analysis based on Recommender Systems [1.7478203318226309]
Cognitive science pursues the goal of modeling human-like intelligence from a theory-driven perspective.
Syllogistic reasoning is one of the core domains of human reasoning research.
Recent analyses of models' predictive performances revealed a stagnation in improvement.
arXiv Detail & Related papers (2020-03-11T10:12:35Z) - A Survey on Causal Inference [64.45536158710014]
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics.
Various causal effect estimation methods for observational data have sprung up.
arXiv Detail & Related papers (2020-02-05T21:35:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.