An Overview on the Generation and Detection of Synthetic and Manipulated
Satellite Images
- URL: http://arxiv.org/abs/2209.08984v1
- Date: Mon, 19 Sep 2022 13:03:02 GMT
- Title: An Overview on the Generation and Detection of Synthetic and Manipulated
Satellite Images
- Authors: Lydia Abady, Edoardo Daniele Cannas, Paolo Bestagini, Benedetta Tondi,
Stefano Tubaro and Mauro Barni
- Abstract summary: We review the State of the Art (SOTA) on the generation and manipulation of satellite images.
We focus on both the generation of synthetic satellite imagery from scratch, and the semantic manipulation of satellite images by means of image-transfer technologies.
We describe forensic detection techniques that have been researched so far to classify and detect synthetic image forgeries.
- Score: 40.85756821272393
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to the reduction of technological costs and the increase of satellites
launches, satellite images are becoming more popular and easier to obtain.
Besides serving benevolent purposes, satellite data can also be used for
malicious reasons such as misinformation. As a matter of fact, satellite images
can be easily manipulated relying on general image editing tools. Moreover,
with the surge of Deep Neural Networks (DNNs) that can generate realistic
synthetic imagery belonging to various domains, additional threats related to
the diffusion of synthetically generated satellite images are emerging. In this
paper, we review the State of the Art (SOTA) on the generation and manipulation
of satellite images. In particular, we focus on both the generation of
synthetic satellite imagery from scratch, and the semantic manipulation of
satellite images by means of image-transfer technologies, including the
transformation of images obtained from one type of sensor to another one. We
also describe forensic detection techniques that have been researched so far to
classify and detect synthetic image forgeries. While we focus mostly on
forensic techniques explicitly tailored to the detection of AI-generated
synthetic contents, we also review some methods designed for general splicing
detection, which can in principle also be used to spot AI manipulate images
Related papers
- When Synthetic Traces Hide Real Content: Analysis of Stable Diffusion Image Laundering [18.039034362749504]
In recent years, methods for producing highly realistic synthetic images have significantly advanced.
It is possible to pass an image through SD autoencoders to reproduce a synthetic copy of the image with high realism and almost no visual artifacts.
This process, known as SD image laundering, can transform real images into lookalike synthetic ones and risks complicating forensic analysis for content authenticity verification.
arXiv Detail & Related papers (2024-07-15T14:01:35Z) - Generating Synthetic Satellite Imagery With Deep-Learning Text-to-Image Models -- Technical Challenges and Implications for Monitoring and Verification [46.42328086160106]
We explore how synthetic satellite images can be created using conditioning mechanisms.
We evaluate the results based on authenticity and state-of-the-art metrics.
We discuss implications of synthetic satellite imagery in the context of monitoring and verification.
arXiv Detail & Related papers (2024-04-11T14:00:20Z) - Evaluation of Pre-Trained CNN Models for Geographic Fake Image Detection [20.41074415307636]
We are witnessing the emergence of fake satellite images, which can be misleading or even threatening to national security.
We explore the suitability of several convolutional neural network (CNN) architectures for fake satellite image detection.
This work allows the establishment of new baselines and may be useful for the development of CNN-based methods for fake satellite image detection.
arXiv Detail & Related papers (2022-10-01T20:37:24Z) - Unsupervised Discovery of Semantic Concepts in Satellite Imagery with
Style-based Wavelet-driven Generative Models [27.62417543307831]
We present the first pre-trained style- and wavelet-based GAN model that can synthesize a wide gamut of realistic satellite images.
We show that by analyzing the intermediate activations of our network, one can discover a multitude of interpretable semantic directions.
arXiv Detail & Related papers (2022-08-03T14:19:24Z) - Convolutional Neural Processes for Inpainting Satellite Images [56.032183666893246]
Inpainting involves predicting what is missing based on the known pixels and is an old problem in image processing.
We show ConvvNPs can outperform classical methods and state-of-the-art deep learning inpainting models on a scanline inpainting problem for LANDSAT 7 satellite images.
arXiv Detail & Related papers (2022-05-24T23:29:04Z) - Splicing Detection and Localization In Satellite Imagery Using
Conditional GANs [26.615687071827576]
We describe the use of a Conditional Generative Adversarial Network (cGAN) to identify spliced forgeries within satellite images.
Our method achieves high success on these detection and localization objectives.
arXiv Detail & Related papers (2022-05-03T22:25:48Z) - Transformer-based SAR Image Despeckling [53.99620005035804]
We introduce a transformer-based network for SAR image despeckling.
The proposed despeckling network comprises of a transformer-based encoder which allows the network to learn global dependencies between different image regions.
Experiments show that the proposed method achieves significant improvements over traditional and convolutional neural network-based despeckling methods.
arXiv Detail & Related papers (2022-01-23T20:09:01Z) - Fusion of Deep and Non-Deep Methods for Fast Super-Resolution of
Satellite Images [54.44842669325082]
This work proposes to bridge the gap between image quality and the price by improving the image quality via super-resolution (SR)
We design an SR framework that analyzes the regional information content on each patch of the low-resolution image.
We show substantial decrease in inference time while achieving similar performance to that of existing deep SR methods.
arXiv Detail & Related papers (2020-08-03T13:55:39Z) - Deep CG2Real: Synthetic-to-Real Translation via Image Disentanglement [78.58603635621591]
Training an unpaired synthetic-to-real translation network in image space is severely under-constrained.
We propose a semi-supervised approach that operates on the disentangled shading and albedo layers of the image.
Our two-stage pipeline first learns to predict accurate shading in a supervised fashion using physically-based renderings as targets.
arXiv Detail & Related papers (2020-03-27T21:45:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.