Generating Synthetic Satellite Imagery With Deep-Learning Text-to-Image Models -- Technical Challenges and Implications for Monitoring and Verification
- URL: http://arxiv.org/abs/2404.07754v1
- Date: Thu, 11 Apr 2024 14:00:20 GMT
- Title: Generating Synthetic Satellite Imagery With Deep-Learning Text-to-Image Models -- Technical Challenges and Implications for Monitoring and Verification
- Authors: Tuong Vy Nguyen, Alexander Glaser, Felix Biessmann,
- Abstract summary: We explore how synthetic satellite images can be created using conditioning mechanisms.
We evaluate the results based on authenticity and state-of-the-art metrics.
We discuss implications of synthetic satellite imagery in the context of monitoring and verification.
- Score: 46.42328086160106
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Novel deep-learning (DL) architectures have reached a level where they can generate digital media, including photorealistic images, that are difficult to distinguish from real data. These technologies have already been used to generate training data for Machine Learning (ML) models, and large text-to-image models like DALL-E 2, Imagen, and Stable Diffusion are achieving remarkable results in realistic high-resolution image generation. Given these developments, issues of data authentication in monitoring and verification deserve a careful and systematic analysis: How realistic are synthetic images? How easily can they be generated? How useful are they for ML researchers, and what is their potential for Open Science? In this work, we use novel DL models to explore how synthetic satellite images can be created using conditioning mechanisms. We investigate the challenges of synthetic satellite image generation and evaluate the results based on authenticity and state-of-the-art metrics. Furthermore, we investigate how synthetic data can alleviate the lack of data in the context of ML methods for remote-sensing. Finally we discuss implications of synthetic satellite imagery in the context of monitoring and verification.
Related papers
- Is Synthetic Image Useful for Transfer Learning? An Investigation into Data Generation, Volume, and Utilization [62.157627519792946]
We introduce a novel framework called bridged transfer, which initially employs synthetic images for fine-tuning a pre-trained model to improve its transferability.
We propose dataset style inversion strategy to improve the stylistic alignment between synthetic and real images.
Our proposed methods are evaluated across 10 different datasets and 5 distinct models, demonstrating consistent improvements.
arXiv Detail & Related papers (2024-03-28T22:25:05Z) - Harnessing Machine Learning for Discerning AI-Generated Synthetic Images [2.6227376966885476]
We employ machine learning techniques to discern between AI-generated and genuine images.
We refine and adapt advanced deep learning architectures like ResNet, VGGNet, and DenseNet.
The experimental results were significant, demonstrating that our optimized deep learning models outperform traditional methods.
arXiv Detail & Related papers (2024-01-14T20:00:37Z) - AI-Generated Images as Data Source: The Dawn of Synthetic Era [61.879821573066216]
generative AI has unlocked the potential to create synthetic images that closely resemble real-world photographs.
This paper explores the innovative concept of harnessing these AI-generated images as new data sources.
In contrast to real data, AI-generated data exhibit remarkable advantages, including unmatched abundance and scalability.
arXiv Detail & Related papers (2023-10-03T06:55:19Z) - CIFAKE: Image Classification and Explainable Identification of
AI-Generated Synthetic Images [7.868449549351487]
This article proposes to enhance our ability to recognise AI-generated images through computer vision.
The two sets of data present as a binary classification problem with regard to whether the photograph is real or generated by AI.
This study proposes the use of a Convolutional Neural Network (CNN) to classify the images into two categories; Real or Fake.
arXiv Detail & Related papers (2023-03-24T16:33:06Z) - Is synthetic data from generative models ready for image recognition? [69.42645602062024]
We study whether and how synthetic images generated from state-of-the-art text-to-image generation models can be used for image recognition tasks.
We showcase the powerfulness and shortcomings of synthetic data from existing generative models, and propose strategies for better applying synthetic data for recognition tasks.
arXiv Detail & Related papers (2022-10-14T06:54:24Z) - Synthetic Data for Model Selection [2.4499092754102874]
We show that synthetic data can be beneficial for model selection.
We introduce a novel method to calibrate the synthetic error estimation to fit that of the real domain.
arXiv Detail & Related papers (2021-05-03T09:52:03Z) - Syn2Real Transfer Learning for Image Deraining using Gaussian Processes [92.15895515035795]
CNN-based methods for image deraining have achieved excellent performance in terms of reconstruction error as well as visual quality.
Due to challenges in obtaining real world fully-labeled image deraining datasets, existing methods are trained only on synthetically generated data.
We propose a Gaussian Process-based semi-supervised learning framework which enables the network in learning to derain using synthetic dataset.
arXiv Detail & Related papers (2020-06-10T00:33:18Z) - Can Synthetic Data Improve Object Detection Results for Remote Sensing
Images? [15.466412729455874]
We propose the use of realistic synthetic data with a wide distribution to improve the performance of remote sensing image aircraft detection.
We randomly set the parameters during rendering, such as the size of the instance and the class of background images.
In order to make the synthetic images more realistic, we refine the synthetic images at the pixel level using CycleGAN with real unlabeled images.
arXiv Detail & Related papers (2020-06-09T02:23:22Z) - Unlimited Resolution Image Generation with R2D2-GANs [69.90258455164513]
We present a novel simulation technique for generating high quality images of any predefined resolution.
This method can be used to synthesize sonar scans of size equivalent to those collected during a full-length mission.
The data produced is continuous, realistically-looking, and can also be generated at least two times faster than the real speed of acquisition.
arXiv Detail & Related papers (2020-03-02T17:49:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.