A Causal Intervention Scheme for Semantic Segmentation of Quasi-periodic
Cardiovascular Signals
- URL: http://arxiv.org/abs/2209.09018v1
- Date: Mon, 19 Sep 2022 13:54:51 GMT
- Title: A Causal Intervention Scheme for Semantic Segmentation of Quasi-periodic
Cardiovascular Signals
- Authors: Xingyao Wang, Yuwen Li, Hongxiang Gao, Xianghong Cheng, Jianqing Li
and Chengyu Liu
- Abstract summary: We propose contrastive causal intervention (CCI) to form a novel training paradigm under a frame-level contrastive framework.
The intervention can eliminate the implicit statistical bias brought by the single attribute and lead to more objective representations.
- Score: 7.182731690965173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precise segmentation is a vital first step to analyze semantic information of
cardiac cycle and capture anomaly with cardiovascular signals. However, in the
field of deep semantic segmentation, inference is often unilaterally confounded
by the individual attribute of data. Towards cardiovascular signals,
quasi-periodicity is the essential characteristic to be learned, regarded as
the synthesize of the attributes of morphology (Am) and rhythm (Ar). Our key
insight is to suppress the over-dependence on Am or Ar while the generation
process of deep representations. To address this issue, we establish a
structural causal model as the foundation to customize the intervention
approaches on Am and Ar, respectively. In this paper, we propose contrastive
causal intervention (CCI) to form a novel training paradigm under a frame-level
contrastive framework. The intervention can eliminate the implicit statistical
bias brought by the single attribute and lead to more objective
representations. We conduct comprehensive experiments with the controlled
condition for QRS location and heart sound segmentation. The final results
indicate that our approach can evidently improve the performance by up to 0.41%
for QRS location and 2.73% for heart sound segmentation. The efficiency of the
proposed method is generalized to multiple databases and noisy signals.
Related papers
- CTPD: Cross-Modal Temporal Pattern Discovery for Enhanced Multimodal Electronic Health Records Analysis [46.56667527672019]
We introduce a Cross-Modal Temporal Pattern Discovery (CTPD) framework, designed to efficiently extract meaningful cross-modal temporal patterns from multimodal EHR data.
Our approach introduces shared initial temporal pattern representations which are refined using slot attention to generate temporal semantic embeddings.
arXiv Detail & Related papers (2024-11-01T15:54:07Z) - MPSeg : Multi-Phase strategy for coronary artery Segmentation [9.767759441883008]
We present MPSeg, an innovative multi-phase strategy designed for coronary artery segmentation.
Our approach specifically accommodates these structural complexities and adheres to the principles of the SYNTAX Score.
Notably, our approach demonstrated exceptional effectiveness when evaluated in the Automatic Region-based Coronary Artery Disease diagnostics.
arXiv Detail & Related papers (2023-11-17T03:33:09Z) - Improving Multiple Sclerosis Lesion Segmentation Across Clinical Sites:
A Federated Learning Approach with Noise-Resilient Training [75.40980802817349]
Deep learning models have shown promise for automatically segmenting MS lesions, but the scarcity of accurately annotated data hinders progress in this area.
We introduce a Decoupled Hard Label Correction (DHLC) strategy that considers the imbalanced distribution and fuzzy boundaries of MS lesions.
We also introduce a Centrally Enhanced Label Correction (CELC) strategy, which leverages the aggregated central model as a correction teacher for all sites.
arXiv Detail & Related papers (2023-08-31T00:36:10Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - Brain Imaging-to-Graph Generation using Adversarial Hierarchical Diffusion Models for MCI Causality Analysis [44.45598796591008]
Brain imaging-to-graph generation (BIGG) framework is proposed to map functional magnetic resonance imaging (fMRI) into effective connectivity for mild cognitive impairment analysis.
The hierarchical transformers in the generator are designed to estimate the noise at multiple scales.
Evaluations of the ADNI dataset demonstrate the feasibility and efficacy of the proposed model.
arXiv Detail & Related papers (2023-05-18T06:54:56Z) - Fuzzy Attention Neural Network to Tackle Discontinuity in Airway
Segmentation [67.19443246236048]
Airway segmentation is crucial for the examination, diagnosis, and prognosis of lung diseases.
Some small-sized airway branches (e.g., bronchus and terminaloles) significantly aggravate the difficulty of automatic segmentation.
This paper presents an efficient method for airway segmentation, comprising a novel fuzzy attention neural network and a comprehensive loss function.
arXiv Detail & Related papers (2022-09-05T16:38:13Z) - An Algorithm for the Labeling and Interactive Visualization of the
Cerebrovascular System of Ischemic Strokes [59.116811751334225]
VirtualDSA++ is an algorithm designed to segment and label the cerebrovascular tree on CTA scans.
We extend the labeling mechanism for the cerebral arteries to identify occluded vessels.
We present the generic concept of iterative systematic search for pathways on all nodes of said model, which enables new interactive features.
arXiv Detail & Related papers (2022-04-26T14:20:26Z) - Towards Fully Automated Segmentation of Rat Cardiac MRI by Leveraging
Deep Learning Frameworks [1.6020567943077142]
We develop segmentation models that expand on the standard U-Net architecture and evaluate separate models for systole and diastole phases.
Applying Gaussian Processes to 1MSA allows to automate the selection of systole and diastole phases.
arXiv Detail & Related papers (2021-09-09T11:48:50Z) - Segmentation-free Heart Pathology Detection Using Deep Learning [12.065014651638943]
We propose a novel segmentation-free heart sound classification method.
Specifically, we apply discrete wavelet transform to denoise the signal, followed by feature extraction and feature reduction.
Support Vector Machines and Deep Neural Networks are utilised for classification.
arXiv Detail & Related papers (2021-08-09T16:09:30Z) - Heart Sound Classification Considering Additive Noise and Convolutional
Distortion [2.63046959939306]
Automatic analysis of heart sounds for abnormality detection is faced with the challenges of additive noise and sensor-dependent degradation.
This paper aims to develop methods to address the cardiac abnormality detection problem when both types of distortions are present in the cardiac auscultation sound.
The proposed method paves the way towards developing computer-aided cardiac auscultation systems in noisy environments using low-cost stethoscopes.
arXiv Detail & Related papers (2021-06-03T14:09:04Z) - Heart Sound Segmentation using Bidirectional LSTMs with Attention [37.62160903348547]
We propose a novel framework for the segmentation of phonocardiogram (PCG) signals into heart states.
We exploit recent advancements in attention based learning to segment the PCG signal.
The proposed method attains state-of-the-art performance on multiple benchmarks including both human and animal heart recordings.
arXiv Detail & Related papers (2020-04-02T02:09:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.