論文の概要: Low-Energy Convolutional Neural Networks (CNNs) using Hadamard Method
- arxiv url: http://arxiv.org/abs/2209.09106v1
- Date: Tue, 6 Sep 2022 21:36:57 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-25 17:40:37.806384
- Title: Low-Energy Convolutional Neural Networks (CNNs) using Hadamard Method
- Title(参考訳): アダマール法を用いた低エネルギー畳み込みニューラルネットワーク(CNN)
- Authors: Varun Mannam
- Abstract要約: 畳み込みニューラルネットワーク(CNN)は、オブジェクト認識と検出の潜在的アプローチである。
畳み込み操作の代替として,アダマール変換に基づく新しいアプローチを示す。
この方法は、入力画像サイズよりもカーネルサイズが小さい場合、他のコンピュータビジョンタスクに役立ちます。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: The growing demand for the internet of things (IoT) makes it necessary to
implement computer vision tasks such as object recognition in low-power
devices. Convolutional neural networks (CNNs) are a potential approach for
object recognition and detection. However, the convolutional layer in CNN
consumes significant energy compared to the fully connected layers. To mitigate
this problem, a new approach based on the Hadamard transformation as an
alternative to the convolution operation is demonstrated using two fundamental
datasets, MNIST and CIFAR10. The mathematical expression of the Hadamard method
shows the clear potential to save energy consumption compared to convolutional
layers, which are helpful with BigData applications. In addition, to the test
accuracy of the MNIST dataset, the Hadamard method performs similarly to the
convolution method. In contrast, with the CIFAR10 dataset, test data accuracy
is dropped (due to complex data and multiple channels) compared to the
convolution method. Finally, the demonstrated method is helpful for other
computer vision tasks when the kernel size is smaller than the input image
size.
- Abstract(参考訳): モノのインターネット(IoT)の需要が高まっているため、低消費電力デバイスでオブジェクト認識などのコンピュータビジョンタスクを実装する必要がある。
畳み込みニューラルネットワーク(CNN)は、オブジェクト認識と検出の潜在的アプローチである。
しかし、cnnの畳み込み層は、完全連結層と比較してかなりのエネルギーを消費する。
この問題を軽減するために,MNISTとCIFAR10という2つの基本データセットを用いて,畳み込み操作の代替として,アダマール変換に基づく新しいアプローチを示す。
アダマール法の数学的表現は、ビッグデータアプリケーションに役立つ畳み込み層に比べてエネルギー消費を節約できる明確な可能性を示している。
さらに、MNISTデータセットのテスト精度のため、アダマール法は畳み込み法と同様に動作する。
対照的に、CIFAR10データセットでは、畳み込み法と比較してテストデータの精度が低下する(複雑なデータと複数のチャネルのため)。
最後に,カーネルサイズが入力画像サイズよりも小さい場合のコンピュータビジョンタスクにおいて,本手法が有効であることを示す。
関連論文リスト
- Heterogenous Memory Augmented Neural Networks [84.29338268789684]
ニューラルネットワークのための新しいヘテロジニアスメモリ拡張手法を提案する。
学習可能なメモリトークンをアテンション機構付きで導入することにより、膨大な計算オーバーヘッドを伴わずに性能を効果的に向上させることができる。
In-distriion (ID) と Out-of-distriion (OOD) の両方の条件下での様々な画像およびグラフベースのタスクに対するアプローチを示す。
論文 参考訳(メタデータ) (2023-10-17T01:05:28Z) - FFEINR: Flow Feature-Enhanced Implicit Neural Representation for
Spatio-temporal Super-Resolution [4.577685231084759]
本稿では,フローフィールドデータの超高分解能化のための特徴強調型ニューラルインシシット表現(FFEINR)を提案する。
モデル構造とサンプリング分解能の観点から、暗黙のニューラル表現を最大限に活用することができる。
FFEINRのトレーニングプロセスは、入力層に機能拡張を導入することで容易になる。
論文 参考訳(メタデータ) (2023-08-24T02:28:18Z) - Deep Multi-Threshold Spiking-UNet for Image Processing [51.88730892920031]
本稿では,SNN(Spike Neural Networks)とU-Netアーキテクチャを組み合わせた,画像処理のためのスパイキング-UNetの概念を紹介する。
効率的なスパイキング-UNetを実現するためには,スパイクによる高忠実度情報伝播の確保と,効果的なトレーニング戦略の策定という2つの課題に直面する。
実験の結果,画像のセグメンテーションとデノイングにおいて,スパイキングUNetは非スパイキングと同等の性能を発揮することがわかった。
論文 参考訳(メタデータ) (2023-07-20T16:00:19Z) - Input Layer Binarization with Bit-Plane Encoding [4.872439392746007]
本稿では,入力データの8ビット表現を直接利用して,第1層をバイナライズする手法を提案する。
得られたモデルは完全にバイナライズされ、第1層バイナライズアプローチはモデル独立です。
論文 参考訳(メタデータ) (2023-05-04T14:49:07Z) - Lost Vibration Test Data Recovery Using Convolutional Neural Network: A
Case Study [0.0]
本稿では,アラモサキャニオン橋のCNNアルゴリズムを実構造として提案する。
3つの異なるCNNモデルは、1つと2つの故障したセンサーを予測するものとされた。
畳み込み層を追加することによりモデルの精度が向上した。
論文 参考訳(メタデータ) (2022-04-11T23:24:03Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - Learning A 3D-CNN and Transformer Prior for Hyperspectral Image
Super-Resolution [80.93870349019332]
本稿では,CNN の代わりに Transformer を用いて HSI の事前学習を行う新しい HSISR 手法を提案する。
具体的には、まず勾配アルゴリズムを用いてHSISRモデルを解き、次に展開ネットワークを用いて反復解過程をシミュレートする。
論文 参考訳(メタデータ) (2021-11-27T15:38:57Z) - Multi-objective Evolutionary Approach for Efficient Kernel Size and
Shape for CNN [12.697368516837718]
VGGNetやResNetのようなCNNトポロジにおける最先端の開発は、ますます正確になっている。
これらのネットワークは数十億の演算とパラメータを含む計算コストが高い。
本稿では,畳み込み層におけるカーネルのサイズと数を削減することにより,計算資源の消費を最適化することを検討する。
論文 参考訳(メタデータ) (2021-06-28T14:47:29Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
本稿では,量子化されたニューラルネットワーク(QNN)をマルチブランチバイナリネットワークに分解するために,-1,+1を用いた新しい符号化方式を提案する。
本稿では,大規模画像分類,オブジェクト検出,セマンティックセグメンテーションにおける提案手法の有効性を検証する。
論文 参考訳(メタデータ) (2021-06-18T03:11:15Z) - Random Features for the Neural Tangent Kernel [57.132634274795066]
完全接続型ReLUネットワークのニューラルタンジェントカーネル(NTK)の効率的な特徴マップ構築を提案する。
得られた特徴の次元は、理論と実践の両方で比較誤差境界を達成するために、他のベースライン特徴マップ構造よりもはるかに小さいことを示しています。
論文 参考訳(メタデータ) (2021-04-03T09:08:12Z) - Deep Convolutional Neural Networks: A survey of the foundations,
selected improvements, and some current applications [0.0]
本稿では,CNN(Convolutional Neural Networks)という,そのような手法を提示し,検討する。
CNNは、畳み込みと呼ばれる特別な線形演算を使用するディープニューラルネットワークである。
本稿では、実際に非常に効果的であることが証明された畳み込みの2つの応用について論じる。
論文 参考訳(メタデータ) (2020-11-25T19:03:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。