Digital quantum simulation of the BCS model with a central-spin-like
quantum processor
- URL: http://arxiv.org/abs/2209.09225v2
- Date: Tue, 20 Jun 2023 00:33:14 GMT
- Title: Digital quantum simulation of the BCS model with a central-spin-like
quantum processor
- Authors: Jannis Ruh, Regina Finsterhoelzl, Guido Burkard
- Abstract summary: We present a quantum algorithm to perform digital quantum simulations of the BCS model on a quantum register with a star shaped connectivity map.
We show how to effectively translate the problem onto the quantum hardware and implement the algorithm using only the native interactions between the qubits.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The simulation of quantum systems is one of the most promising applications
of quantum computers. In this paper we present a quantum algorithm to perform
digital quantum simulations of the BCS model on a quantum register with a star
shaped connectivity map, as it is, e.g., featured by color centers in diamond.
We show how to effectively translate the problem onto the quantum hardware and
implement the algorithm using only the native interactions between the qubits.
Furthermore we discuss the complexity of the circuit. We use the algorithm to
simulate the dynamics of the BCS model by subjecting its mean-field ground
state to a time-dependent perturbation. The quantum simulation algorithm is
studied using a classical simulation.
Related papers
- Digital Quantum Simulations of Hong-Ou-Mandel Interference [0.26813152817733554]
We discuss the application of digital quantum simulations to simulate a bosonic system, a beam splitter.
We validated our quantum circuit that mimics the action of a beam splitter by simulating the Hong-Ou-Mandel interference experiment.
arXiv Detail & Related papers (2024-02-27T14:05:34Z) - Quantum algorithms for the simulation of perturbative QCD processes [0.0]
We discuss quantum algorithms for the simulation of perturbative Quantum Chromodynamics (QCD) processes.
In particular, we describe quantum circuits for simulating the colour part of the interactions of quarks and gluons.
arXiv Detail & Related papers (2023-09-12T12:50:37Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Simulation of Entanglement Generation between Absorptive Quantum
Memories [56.24769206561207]
We use the open-source Simulator of QUantum Network Communication (SeQUeNCe), developed by our team, to simulate entanglement generation between two atomic frequency comb (AFC) absorptive quantum memories.
We realize the representation of photonic quantum states within truncated Fock spaces in SeQUeNCe.
We observe varying fidelity with SPDC source mean photon number, and varying entanglement generation rate with both mean photon number and memory mode number.
arXiv Detail & Related papers (2022-12-17T05:51:17Z) - Digital Quantum Simulation and Circuit Learning for the Generation of
Coherent States [1.4153418423656923]
Two ways to digitally prepare coherent states in quantum circuits are introduced.
The high fidelity of the digitally generated coherent states is verified.
The simulation results show that quantum circuit learning can provide high fidelity on learning coherent states by choosing appropriate ansatzes.
arXiv Detail & Related papers (2022-10-30T09:06:21Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Digital quantum simulation of open quantum systems using quantum
imaginary time evolution [0.0]
We report algorithms for the digital quantum simulation of the dynamics of open quantum systems governed by a Lindblad equation.
Our work advances efforts to simulate the dynamics of open quantum systems on quantum hardware.
arXiv Detail & Related papers (2021-04-15T23:48:06Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - Quantum Assisted Simulator [0.0]
We provide a novel hybrid quantum-classical algorithm for simulating the dynamics of quantum systems.
Unlike existing variational quantum simulation algorithms, our algorithm does not require any classical-quantum feedback loop.
arXiv Detail & Related papers (2020-11-12T13:52:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.