Quantum simulation of scattering amplitudes and interferences in perturbative QCD
- URL: http://arxiv.org/abs/2507.07194v1
- Date: Wed, 09 Jul 2025 18:10:25 GMT
- Title: Quantum simulation of scattering amplitudes and interferences in perturbative QCD
- Authors: Herschel A. Chawdhry, Mathieu Pellen, Simon Williams,
- Abstract summary: We show how quantum computers can be employed to calculate Feynman diagrams and their interferences in Quantum Chromodynamics (QCD)<n>We simulate the colour parts of the interactions directly on the quantum computer, while the kinematic parts are for now pre-computed classically.<n>For processes where some of the external particles are identical, we find the first hints of a potential quantum advantage.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A flagship application of quantum computers is the simulation of other quantum systems, including quantum field theories. In this article, we show how quantum computers can be employed to naturally calculate Feynman diagrams and their interferences in Quantum Chromodynamics (QCD). We simulate the colour parts of the interactions directly on the quantum computer, while the kinematic parts are for now pre-computed classically. For processes where some of the external particles are identical, we find the first hints of a potential quantum advantage. We validate our techniques using simulated quantum computers. Furthermore, for toy examples we also demonstrate our algorithms on a 56-qubit trapped-ion quantum computer. The work constitutes a further key step towards a full quantum simulation of generic perturbative QCD processes.
Related papers
- Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Quantum algorithms for the simulation of perturbative QCD processes [0.0]
We discuss quantum algorithms for the simulation of perturbative Quantum Chromodynamics (QCD) processes.
In particular, we describe quantum circuits for simulating the colour part of the interactions of quarks and gluons.
arXiv Detail & Related papers (2023-09-12T12:50:37Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - Quantum simulation of colour in perturbative quantum chromodynamics [0.0]
We present quantum gates that simulate the colour part of the interactions of quarks and gluons in perturbative quantum chromodynamics (QCD)
We implement these circuits on a simulated noiseless quantum computer and use them to calculate colour factors for various examples of Feynman diagrams.
arXiv Detail & Related papers (2023-03-08T19:00:01Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Digital quantum simulation of the BCS model with a central-spin-like
quantum processor [0.0]
We present a quantum algorithm to perform digital quantum simulations of the BCS model on a quantum register with a star shaped connectivity map.
We show how to effectively translate the problem onto the quantum hardware and implement the algorithm using only the native interactions between the qubits.
arXiv Detail & Related papers (2022-09-19T17:48:45Z) - Scalable Simulation of Quantum Measurement Process with Quantum
Computers [13.14263204660076]
We propose qubit models to emulate the quantum measurement process.
One model is motivated by single-photon detection and the other by spin measurement.
We generate Schr"odinger cat-like state, and their corresponding quantum circuits are shown explicitly.
arXiv Detail & Related papers (2022-06-28T14:21:43Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - Towards Quantum Simulations in Particle Physics and Beyond on Noisy
Intermediate-Scale Quantum Devices [1.7242431149740054]
We review two algorithmic advances that bring us closer to reliable quantum simulations of model systems in high energy physics.
The first method is the dimensional expressivity analysis of quantum circuits, which allows for constructing minimal but maximally expressive quantum circuits.
The second method is an efficient mitigation of readout errors on quantum devices.
arXiv Detail & Related papers (2021-10-07T22:13:37Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z) - An Application of Quantum Annealing Computing to Seismic Inversion [55.41644538483948]
We apply a quantum algorithm to a D-Wave quantum annealer to solve a small scale seismic inversions problem.
The accuracy achieved by the quantum computer is at least as good as that of the classical computer.
arXiv Detail & Related papers (2020-05-06T14:18:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.