Quantum Assisted Simulator
- URL: http://arxiv.org/abs/2011.06911v2
- Date: Wed, 1 Sep 2021 11:10:53 GMT
- Title: Quantum Assisted Simulator
- Authors: Kishor Bharti, Tobias Haug
- Abstract summary: We provide a novel hybrid quantum-classical algorithm for simulating the dynamics of quantum systems.
Unlike existing variational quantum simulation algorithms, our algorithm does not require any classical-quantum feedback loop.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum simulation can help us study poorly understood topics such as
high-temperature superconductivity and drug design. However, existing quantum
simulation algorithms for current quantum computers often have drawbacks that
impede their application. Here, we provide a novel hybrid quantum-classical
algorithm for simulating the dynamics of quantum systems. Our approach takes
the Ansatz wavefunction as a linear combination of quantum states. The quantum
states are fixed, and the combination parameters are variationally adjusted.
Unlike existing variational quantum simulation algorithms, our algorithm does
not require any classical-quantum feedback loop and by construction bypasses
the barren plateau problem. Moreover, our algorithm does not require any
complicated measurements such as the Hadamard test. The entire framework is
compatible with existing experimental capabilities and thus can be implemented
immediately.
Related papers
- Parallel Quantum Computing Simulations via Quantum Accelerator Platform Virtualization [44.99833362998488]
We present a model for parallelizing simulation of quantum circuit executions.
The model can take advantage of its backend-agnostic features, enabling parallel quantum circuit execution over any target backend.
arXiv Detail & Related papers (2024-06-05T17:16:07Z) - Quantum algorithms: A survey of applications and end-to-end complexities [90.05272647148196]
The anticipated applications of quantum computers span across science and industry.
We present a survey of several potential application areas of quantum algorithms.
We outline the challenges and opportunities in each area in an "end-to-end" fashion.
arXiv Detail & Related papers (2023-10-04T17:53:55Z) - Adaptive variational simulation for open quantum systems [0.25602836891933073]
We present an adaptive variational quantum algorithm for simulating open quantum system dynamics.
Our results demonstrate that near-future quantum processors are capable of simulating open quantum systems.
arXiv Detail & Related papers (2023-05-11T16:00:13Z) - Time-Optimal Quantum Driving by Variational Circuit Learning [2.9582851733261286]
Digital quantum simulation and hybrid circuit learning opens up new prospects for quantum optimal control.
We simulate the wave-packet expansion of a trapped quantum particle on a quantum device with a finite number qubits.
We discuss the robustness of our method against errors and demonstrate the absence of barren plateaus in the circuit.
arXiv Detail & Related papers (2022-11-01T11:53:49Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Adiabatic Quantum Graph Matching with Permutation Matrix Constraints [75.88678895180189]
Matching problems on 3D shapes and images are frequently formulated as quadratic assignment problems (QAPs) with permutation matrix constraints, which are NP-hard.
We propose several reformulations of QAPs as unconstrained problems suitable for efficient execution on quantum hardware.
The proposed algorithm has the potential to scale to higher dimensions on future quantum computing architectures.
arXiv Detail & Related papers (2021-07-08T17:59:55Z) - Variational Quantum Anomaly Detection: Unsupervised mapping of phase
diagrams on a physical quantum computer [0.0]
We propose variational quantum anomaly detection, an unsupervised quantum machine learning algorithm to analyze quantum data from quantum simulation.
The algorithm is used to extract the phase diagram of a system with no prior physical knowledge.
We show that it can be used with readily accessible devices nowadays and perform the algorithm on a real quantum computer.
arXiv Detail & Related papers (2021-06-15T06:54:47Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Stochastic Quantum Circuit Simulation Using Decision Diagrams [3.9006434061597877]
A substantial amount of quantum algorithms research still relies on simulating quantum circuits on classical hardware.
We propose to use decision diagrams, as well as concurrent executions, to substantially reduce resource-requirements.
Backed up by rigorous theory, empirical studies show that this approach allows for a substantially faster and much more scalable simulation for certain quantum circuits.
arXiv Detail & Related papers (2020-12-10T12:10:18Z) - Generalized Quantum Assisted Simulator [0.0]
We introduce the notion of the hybrid density matrix, which allows us to disentangle the different steps of our algorithm.
Our algorithm has potential applications in solving the Navier-Stokes equation, plasma hydrodynamics, quantum Boltzmann training, quantum signal processing and linear systems.
arXiv Detail & Related papers (2020-11-30T12:40:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.