Analyzing Machine Learning Models for Credit Scoring with Explainable AI
and Optimizing Investment Decisions
- URL: http://arxiv.org/abs/2209.09362v1
- Date: Mon, 19 Sep 2022 21:44:42 GMT
- Title: Analyzing Machine Learning Models for Credit Scoring with Explainable AI
and Optimizing Investment Decisions
- Authors: Swati Tyagi
- Abstract summary: This paper examines two different yet related questions related to explainable AI (XAI) practices.
The study compares various machine learning models, including single classifiers (logistic regression, decision trees, LDA, QDA), heterogeneous ensembles (AdaBoost, Random Forest), and sequential neural networks.
Two advanced post-hoc model explainability techniques - LIME and SHAP are utilized to assess ML-based credit scoring models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: This paper examines two different yet related questions related to
explainable AI (XAI) practices. Machine learning (ML) is increasingly important
in financial services, such as pre-approval, credit underwriting, investments,
and various front-end and back-end activities. Machine Learning can
automatically detect non-linearities and interactions in training data,
facilitating faster and more accurate credit decisions. However, machine
learning models are opaque and hard to explain, which are critical elements
needed for establishing a reliable technology. The study compares various
machine learning models, including single classifiers (logistic regression,
decision trees, LDA, QDA), heterogeneous ensembles (AdaBoost, Random Forest),
and sequential neural networks. The results indicate that ensemble classifiers
and neural networks outperform. In addition, two advanced post-hoc model
agnostic explainability techniques - LIME and SHAP are utilized to assess
ML-based credit scoring models using the open-access datasets offered by
US-based P2P Lending Platform, Lending Club. For this study, we are also using
machine learning algorithms to develop new investment models and explore
portfolio strategies that can maximize profitability while minimizing risk.
Related papers
- Verification of Machine Unlearning is Fragile [48.71651033308842]
We introduce two novel adversarial unlearning processes capable of circumventing both types of verification strategies.
This study highlights the vulnerabilities and limitations in machine unlearning verification, paving the way for further research into the safety of machine unlearning.
arXiv Detail & Related papers (2024-08-01T21:37:10Z) - Coupling Machine Learning with Ontology for Robotics Applications [0.0]
The lack of availability of prior knowledge in dynamic scenarios is without doubt a major barrier for scalable machine intelligence.
My view of the interaction between the two tiers intelligence is based on the idea that when knowledge is not readily available at the knowledge base tier, more knowledge can be extracted from the other tier.
arXiv Detail & Related papers (2024-06-08T23:38:03Z) - The Frontier of Data Erasure: Machine Unlearning for Large Language Models [56.26002631481726]
Large Language Models (LLMs) are foundational to AI advancements.
LLMs pose risks by potentially memorizing and disseminating sensitive, biased, or copyrighted information.
Machine unlearning emerges as a cutting-edge solution to mitigate these concerns.
arXiv Detail & Related papers (2024-03-23T09:26:15Z) - Explainable Automated Machine Learning for Credit Decisions: Enhancing
Human Artificial Intelligence Collaboration in Financial Engineering [0.0]
This paper explores the integration of Explainable Automated Machine Learning (AutoML) in the realm of financial engineering.
The focus is on how AutoML can streamline the development of robust machine learning models for credit scoring.
The findings underscore the potential of explainable AutoML in improving the transparency and accountability of AI-driven financial decisions.
arXiv Detail & Related papers (2024-02-06T08:47:16Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Zero-knowledge Proof Meets Machine Learning in Verifiability: A Survey [19.70499936572449]
High-quality models rely not only on efficient optimization algorithms but also on the training and learning processes built upon vast amounts of data and computational power.
Due to various challenges such as limited computational resources and data privacy concerns, users in need of models often cannot train machine learning models locally.
This paper presents a comprehensive survey of zero-knowledge proof-based verifiable machine learning (ZKP-VML) technology.
arXiv Detail & Related papers (2023-10-23T12:15:23Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions.
By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies.
arXiv Detail & Related papers (2022-11-27T13:07:14Z) - A Survey on Large-scale Machine Learning [67.6997613600942]
Machine learning can provide deep insights into data, allowing machines to make high-quality predictions.
Most sophisticated machine learning approaches suffer from huge time costs when operating on large-scale data.
Large-scale Machine Learning aims to learn patterns from big data with comparable performance efficiently.
arXiv Detail & Related papers (2020-08-10T06:07:52Z) - Transfer Learning without Knowing: Reprogramming Black-box Machine
Learning Models with Scarce Data and Limited Resources [78.72922528736011]
We propose a novel approach, black-box adversarial reprogramming (BAR), that repurposes a well-trained black-box machine learning model.
Using zeroth order optimization and multi-label mapping techniques, BAR can reprogram a black-box ML model solely based on its input-output responses.
BAR outperforms state-of-the-art methods and yields comparable performance to the vanilla adversarial reprogramming method.
arXiv Detail & Related papers (2020-07-17T01:52:34Z) - Machine Learning Algorithms for Financial Asset Price Forecasting [0.0]
This study directly compares and contrasts state-of-the-art implementations of modern Machine Learning algorithms on high performance computing infrastructures.
The implemented Machine Learning models - trained on time series data for an entire stock universe - significantly outperform the CAPM on out-of-sample (OOS) test data.
arXiv Detail & Related papers (2020-03-31T18:14:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.