Advanced Quantum Poisson Solver in the NISQ era
- URL: http://arxiv.org/abs/2209.09366v1
- Date: Mon, 19 Sep 2022 22:17:21 GMT
- Title: Advanced Quantum Poisson Solver in the NISQ era
- Authors: Walter Robson, Kamal K. Saha, Connor Howington, In-Saeng Suh, and
Jaroslaw Nabrzyski
- Abstract summary: We present an advanced quantum algorithm for solving the Poisson equation with high accuracy and dynamically tunable problem size.
In this work we present an advanced circuit that ensures the accuracy of the solution by implementing non-truncated eigenvalues.
We show that our algorithm not only increases the accuracy of the solutions, but also composes more practical and scalable circuits.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The Poisson equation has many applications across the broad areas of science
and engineering. Most quantum algorithms for the Poisson solver presented so
far, either suffer from lack of accuracy and/or are limited to very small sizes
of the problem, and thus have no practical usage. Here we present an advanced
quantum algorithm for solving the Poisson equation with high accuracy and
dynamically tunable problem size. After converting the Poisson equation to the
linear systems through the finite difference method, we adopt the
Harrow-Hassidim-Lloyd (HHL) algorithm as the basic framework. Particularly, in
this work we present an advanced circuit that ensures the accuracy of the
solution by implementing non-truncated eigenvalues through eigenvalue
amplification as well as by increasing the accuracy of the controlled rotation
angular coefficients, which are the critical factors in the HHL algorithm. We
show that our algorithm not only increases the accuracy of the solutions, but
also composes more practical and scalable circuits by dynamically controlling
problem size in the NISQ devices. We present both simulated and experimental
solutions, and conclude that overall results on the quantum hardware are
dominated by the error in the CNOT gates.
Related papers
- Demonstration of Scalability and Accuracy of Variational Quantum Linear Solver for Computational Fluid Dynamics [0.0]
This paper presents an exploration of quantum methodologies aimed at achieving high accuracy in solving such a large system of equations.
We consider the 2D, transient, incompressible, viscous, non-linear coupled Burgers equation as a test problem.
Our findings demonstrate that our quantum methods yield results comparable in accuracy to traditional approaches.
arXiv Detail & Related papers (2024-09-05T04:42:24Z) - High-Entanglement Capabilities for Variational Quantum Algorithms: The Poisson Equation Case [0.07366405857677226]
This research attempts to resolve problems by utilizing the IonQ Aria quantum computer capabilities.
We propose a decomposition of the discretized equation matrix (DPEM) based on 2- or 3-qubit entanglement gates and is shown to have $O(1)$ terms with respect to system size.
We also introduce the Globally-Entangling Ansatz which reduces the parameter space of the quantum ansatz while maintaining enough expressibility to find the solution.
arXiv Detail & Related papers (2024-06-14T16:16:50Z) - Solving Poisson Equations using Neural Walk-on-Spheres [80.1675792181381]
We propose Neural Walk-on-Spheres (NWoS), a novel neural PDE solver for the efficient solution of high-dimensional Poisson equations.
We demonstrate the superiority of NWoS in accuracy, speed, and computational costs.
arXiv Detail & Related papers (2024-06-05T17:59:22Z) - Wasserstein Quantum Monte Carlo: A Novel Approach for Solving the
Quantum Many-Body Schr\"odinger Equation [56.9919517199927]
"Wasserstein Quantum Monte Carlo" (WQMC) uses the gradient flow induced by the Wasserstein metric, rather than Fisher-Rao metric, and corresponds to transporting the probability mass, rather than teleporting it.
We demonstrate empirically that the dynamics of WQMC results in faster convergence to the ground state of molecular systems.
arXiv Detail & Related papers (2023-07-06T17:54:08Z) - Advancing Algorithm to Scale and Accurately Solve Quantum Poisson
Equation on Near-term Quantum Hardware [0.0]
We present an advanced quantum algorithm for solving the Poisson equation with high accuracy and dynamically tunable problem size.
Particularly, in this work we present an advanced circuit that ensures the accuracy of the solution by implementing non-truncated eigenvalues.
We show that our algorithm not only increases the accuracy of the solutions but also composes more practical and scalable circuits.
arXiv Detail & Related papers (2022-10-29T18:50:40Z) - Accelerating the training of single-layer binary neural networks using
the HHL quantum algorithm [58.720142291102135]
We show that useful information can be extracted from the quantum-mechanical implementation of Harrow-Hassidim-Lloyd (HHL)
This paper shows, however, that useful information can be extracted from the quantum-mechanical implementation of HHL, and used to reduce the complexity of finding the solution on the classical side.
arXiv Detail & Related papers (2022-10-23T11:58:05Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Variational Quantum algorithm for Poisson equation [4.045204834863644]
We propose a Variational Quantum Algorithm (VQA) to solve the Poisson equation.
VQA can be executed on Noise Intermediate-Scale Quantum (NISQ) devices.
Numerical experiments demonstrate that our algorithm can effectively solve the Poisson equation.
arXiv Detail & Related papers (2020-12-13T09:28:04Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z) - A quantum Poisson solver implementable on NISQ devices (improved
version) [23.69613801851615]
We propose a compact quantum algorithm for solving one-dimensional Poisson equation based on simple Ry rotation.
The solution error comes only from the finite difference approximation of the Poisson equation.
Our quantum Poisson solver (QPS) has gate-complexity of 3n in qubits and 4n3 in one- and two-qubit gates, where n is the logarithmic of the dimension of the linear system of equations.
arXiv Detail & Related papers (2020-05-01T07:38:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.