論文の概要: Reduction from Complementary-Label Learning to Probability Estimates
- arxiv url: http://arxiv.org/abs/2209.09500v1
- Date: Tue, 20 Sep 2022 06:36:51 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-21 18:54:19.069484
- Title: Reduction from Complementary-Label Learning to Probability Estimates
- Title(参考訳): 補完ラベル学習から確率推定への還元
- Authors: Wei-I Lin, Hsuan-Tien Lin
- Abstract要約: 補完ラベル学習(Complementary-Label Learning, CLL)は、弱い教師付き学習問題である。
本稿では,補足クラスの確率推定に対する新しい視点推論を提案する。
いくつかの重要なCLLアプローチの説明を提供し、改良されたアルゴリズムを設計できる。
- 参考スコア(独自算出の注目度): 15.835526669091157
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Complementary-Label Learning (CLL) is a weakly-supervised learning problem
that aims to learn a multi-class classifier from only complementary labels,
which indicate a class to which an instance does not belong. Existing
approaches mainly adopt the paradigm of reduction to ordinary classification,
which applies specific transformations and surrogate losses to connect CLL back
to ordinary classification. Those approaches, however, face several
limitations, such as the tendency to overfit or be hooked on deep models. In
this paper, we sidestep those limitations with a novel perspective--reduction
to probability estimates of complementary classes. We prove that accurate
probability estimates of complementary labels lead to good classifiers through
a simple decoding step. The proof establishes a reduction framework from CLL to
probability estimates. The framework offers explanations of several key CLL
approaches as its special cases and allows us to design an improved algorithm
that is more robust in noisy environments. The framework also suggests a
validation procedure based on the quality of probability estimates, leading to
an alternative way to validate models with only complementary labels. The
flexible framework opens a wide range of unexplored opportunities in using deep
and non-deep models for probability estimates to solve the CLL problem.
Empirical experiments further verified the framework's efficacy and robustness
in various settings.
- Abstract(参考訳): 補完ラベル学習 (Complementary-Label Learning, CLL) は、補完ラベルのみから多クラス分類器を学習することを目的とした、弱い教師付き学習問題である。
既存のアプローチは主に通常の分類への還元のパラダイムを採用しており、CLLを通常の分類に戻すために特定の変換を適用し、損失を補う。
しかし、これらのアプローチは、過度に適合する傾向や深いモデルに縛られる傾向など、いくつかの制限に直面している。
本稿では,これらの制約を新たな視点,すなわち補足クラスの確率推定への還元に脇取りする。
補ラベルの正確な確率推定は、簡単な復号化ステップを通じて、良い分類器をもたらすことが証明される。
この証明は、CLLから確率推定への還元フレームワークを確立する。
このフレームワークは、いくつかの重要なCLLアプローチを特別なケースとして説明し、ノイズの多い環境でより堅牢な改良アルゴリズムを設計できるようにします。
このフレームワークはまた、確率推定の質に基づいた検証手順も提案しており、補完ラベルのみを持つモデルを検証する別の方法に繋がる。
フレキシブルフレームワークは、CLL問題を解くために、確率推定のためにディープモデルとノンディープモデルを使用する幅広い未探索の機会を開放する。
実験により、様々な環境でのフレームワークの有効性と堅牢性をさらに検証した。
関連論文リスト
- Probably Approximately Precision and Recall Learning [62.912015491907994]
精度とリコールは機械学習の基本的な指標である。
一方的なフィードバック – トレーニング中にのみ肯定的な例が観察される – は,多くの実践的な問題に固有のものだ。
PAC学習フレームワークでは,各仮説をグラフで表現し,エッジは肯定的な相互作用を示す。
論文 参考訳(メタデータ) (2024-11-20T04:21:07Z) - Appeal: Allow Mislabeled Samples the Chance to be Rectified in Partial Label Learning [55.4510979153023]
部分ラベル学習(PLL)では、各インスタンスは候補ラベルのセットに関連付けられ、そのうち1つだけが接地真実である。
誤記されたサンプルの「アペアル」を支援するため,最初の魅力に基づくフレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-18T09:09:52Z) - Probabilistic Safety Regions Via Finite Families of Scalable Classifiers [2.431537995108158]
監視された分類は、データのパターンを認識して、振る舞いのクラスを分離する。
正準解は、機械学習の数値近似の性質に固有の誤分類誤差を含む。
本稿では,確率論的安全性領域の概念を導入し,入力空間のサブセットとして,誤分類されたインスタンスの数を確率論的に制御する手法を提案する。
論文 参考訳(メタデータ) (2023-09-08T22:40:19Z) - PatchMix Augmentation to Identify Causal Features in Few-shot Learning [55.64873998196191]
少ないショット学習は、十分なカテゴリをラベル付けしたデータに基づいて学習した知識を、少ない既知の情報を持つ新しいカテゴリに転送することを目的としている。
我々はPatchMixと呼ばれる新しいデータ拡張戦略を提案し、この急激な依存関係を壊すことができる。
このような拡張メカニズムが,既存のメカニズムと異なり,因果的特徴を識別可能であることを示す。
論文 参考訳(メタデータ) (2022-11-29T08:41:29Z) - Complementary Labels Learning with Augmented Classes [22.460256396941528]
補完ラベル学習 (Complementary Labels Learning, CLL) は、プライベート質問分類やオンライン学習など、現実世界の多くのタスクに現れる。
CLLAC(Complementary Labels Learning with Augmented Classs)と呼ばれる新しい問題設定を提案する。
ラベルのないデータを用いて,CLLACの分類リスクの偏りのない推定手法を提案する。
論文 参考訳(メタデータ) (2022-11-19T13:55:27Z) - Class-Imbalanced Complementary-Label Learning via Weighted Loss [8.934943507699131]
補完ラベル学習(Complementary-label Learning, CLL)は、弱い教師付き分類において広く用いられている。
クラス不均衡のトレーニングサンプルに直面すると、現実世界のデータセットでは大きな課題に直面します。
多クラス分類のためのクラス不均衡補完ラベルからの学習を可能にする新しい問題設定を提案する。
論文 参考訳(メタデータ) (2022-09-28T16:02:42Z) - Rethinking Clustering-Based Pseudo-Labeling for Unsupervised
Meta-Learning [146.11600461034746]
教師なしメタラーニングのメソッドであるCACTUsは、擬似ラベル付きクラスタリングベースのアプローチである。
このアプローチはモデルに依存しないため、教師付きアルゴリズムと組み合わせてラベルのないデータから学習することができる。
このことの核となる理由は、埋め込み空間においてクラスタリングに優しい性質が欠如していることである。
論文 参考訳(メタデータ) (2022-09-27T19:04:36Z) - Multi-Class Classification from Single-Class Data with Confidences [90.48669386745361]
本稿では,損失/モデル/最適化非依存のリスク最小化フレームワークを提案する。
提案手法は, 与えられた信頼度が高ノイズであっても, 簡易な修正でベイズ整合性を示す。
論文 参考訳(メタデータ) (2021-06-16T15:38:13Z) - Unbiased Subdata Selection for Fair Classification: A Unified Framework
and Scalable Algorithms [0.8376091455761261]
このフレームワーク内の多くの分類モデルが混合整数凸プログラムとして再キャストできることを示した。
そして,提案問題において,分類結果の「解決不能な部分データ選択」が強く解決可能であることを示す。
これにより、分類インスタンスを解決するための反復精錬戦略(IRS)の開発を動機付けます。
論文 参考訳(メタデータ) (2020-12-22T21:09:38Z) - Progressive Identification of True Labels for Partial-Label Learning [112.94467491335611]
部分ラベル学習(Partial-label Learning, PLL)は、典型的な弱教師付き学習問題であり、各トレーニングインスタンスには、真のラベルである候補ラベルのセットが設けられている。
既存のほとんどの手法は、特定の方法で解決しなければならない制約付き最適化として精巧に設計されており、計算複雑性をビッグデータにスケールアップするボトルネックにしている。
本稿では,モデルと最適化アルゴリズムの柔軟性を備えた分類器の新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2020-02-19T08:35:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。