論文の概要: Class-Imbalanced Complementary-Label Learning via Weighted Loss
- arxiv url: http://arxiv.org/abs/2209.14189v2
- Date: Sat, 17 Jun 2023 08:03:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-22 05:26:18.864724
- Title: Class-Imbalanced Complementary-Label Learning via Weighted Loss
- Title(参考訳): 重み付き損失による相補的ラベル学習
- Authors: Meng Wei, Yong Zhou, Zhongnian Li, Xinzheng Xu
- Abstract要約: 補完ラベル学習(Complementary-label Learning, CLL)は、弱い教師付き分類において広く用いられている。
クラス不均衡のトレーニングサンプルに直面すると、現実世界のデータセットでは大きな課題に直面します。
多クラス分類のためのクラス不均衡補完ラベルからの学習を可能にする新しい問題設定を提案する。
- 参考スコア(独自算出の注目度): 8.934943507699131
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complementary-label learning (CLL) is widely used in weakly supervised
classification, but it faces a significant challenge in real-world datasets
when confronted with class-imbalanced training samples. In such scenarios, the
number of samples in one class is considerably lower than in other classes,
which consequently leads to a decline in the accuracy of predictions.
Unfortunately, existing CLL approaches have not investigate this problem. To
alleviate this challenge, we propose a novel problem setting that enables
learning from class-imbalanced complementary labels for multi-class
classification. To tackle this problem, we propose a novel CLL approach called
Weighted Complementary-Label Learning (WCLL). The proposed method models a
weighted empirical risk minimization loss by utilizing the class-imbalanced
complementary labels, which is also applicable to multi-class imbalanced
training samples. Furthermore, we derive an estimation error bound to provide
theoretical assurance. To evaluate our approach, we conduct extensive
experiments on several widely-used benchmark datasets and a real-world dataset,
and compare our method with existing state-of-the-art methods. The proposed
approach shows significant improvement in these datasets, even in the case of
multiple class-imbalanced scenarios. Notably, the proposed method not only
utilizes complementary labels to train a classifier but also solves the problem
of class imbalance.
- Abstract(参考訳): 補足ラベル学習(cll)は、弱い教師付き分類において広く使われているが、クラス不均衡なトレーニングサンプルと向き合う場合、現実世界のデータセットにおいて重大な課題に直面している。
このようなシナリオでは、あるクラスのサンプル数は他のクラスのサンプルよりもかなり少なく、結果として予測の精度が低下する。
残念ながら、既存のCLLアプローチはこの問題を調査していない。
この課題を緩和するために,多クラス分類のためのクラス不均衡相補ラベルから学習可能な新しい問題設定を提案する。
そこで本研究では,Weighted Complementary-Label Learning (WCLL) と呼ばれる新しいCLL手法を提案する。
提案手法は,マルチクラス不均衡トレーニングサンプルに適用可能なクラス不均衡相補ラベルを用いて,重み付き経験的リスク最小化損失をモデル化する。
さらに、理論的保証を提供するための推定誤差を導出する。
提案手法を評価するため,複数の広く利用されているベンチマークデータセットと実世界のデータセットについて広範な実験を行い,既存の最先端手法と比較した。
提案手法は,複数のクラス不均衡シナリオの場合においても,これらのデータセットが大幅に改善されていることを示す。
特に,提案手法は補完ラベルを用いて分類器を訓練するだけでなく,クラス不均衡の問題も解決する。
関連論文リスト
- Learning with Complementary Labels Revisited: The Selected-Completely-at-Random Setting Is More Practical [66.57396042747706]
補完ラベル学習は、弱教師付き学習問題である。
均一分布仮定に依存しない一貫したアプローチを提案する。
相補的なラベル学習は、負のラベル付きバイナリ分類問題の集合として表現できる。
論文 参考訳(メタデータ) (2023-11-27T02:59:17Z) - Tackling Diverse Minorities in Imbalanced Classification [80.78227787608714]
不均衡データセットは、様々な現実世界のアプリケーションで一般的に見られ、分類器の訓練において重要な課題が提示されている。
マイノリティクラスとマイノリティクラスの両方のデータサンプルを混合することにより、反復的に合成サンプルを生成することを提案する。
提案するフレームワークの有効性を,7つの公開ベンチマークデータセットを用いて広範な実験により実証する。
論文 参考訳(メタデータ) (2023-08-28T18:48:34Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labelingは、ラベルなしデータを利用するための人気で効果的なアプローチとして登場した。
本稿では,クラスアウェアの擬似ラベル処理を行うCAP(Class-Aware Pseudo-Labeling)という新しい手法を提案する。
論文 参考訳(メタデータ) (2023-05-04T12:52:18Z) - Complementary Labels Learning with Augmented Classes [22.460256396941528]
補完ラベル学習 (Complementary Labels Learning, CLL) は、プライベート質問分類やオンライン学習など、現実世界の多くのタスクに現れる。
CLLAC(Complementary Labels Learning with Augmented Classs)と呼ばれる新しい問題設定を提案する。
ラベルのないデータを用いて,CLLACの分類リスクの偏りのない推定手法を提案する。
論文 参考訳(メタデータ) (2022-11-19T13:55:27Z) - Reduction from Complementary-Label Learning to Probability Estimates [15.835526669091157]
補完ラベル学習(Complementary-Label Learning, CLL)は、弱い教師付き学習問題である。
本稿では,補足クラスの確率推定に対する新しい視点推論を提案する。
いくつかの重要なCLLアプローチの説明を提供し、改良されたアルゴリズムを設計できる。
論文 参考訳(メタデータ) (2022-09-20T06:36:51Z) - A Hybrid Approach for Binary Classification of Imbalanced Data [0.0]
本稿では,データブロック構築,次元減少,アンサンブル学習を併用したハイブリットアプローチHADRを提案する。
我々は、8つの不均衡な公開データセットの性能をリコール、G平均、AUCで評価した。
論文 参考訳(メタデータ) (2022-07-06T15:18:41Z) - CMW-Net: Learning a Class-Aware Sample Weighting Mapping for Robust Deep
Learning [55.733193075728096]
現代のディープニューラルネットワークは、破損したラベルやクラス不均衡を含むバイアス付きトレーニングデータに容易に適合する。
サンプル再重み付け手法は、このデータバイアス問題を緩和するために一般的に使用されている。
本稿では,データから直接明示的な重み付け方式を適応的に学習できるメタモデルを提案する。
論文 参考訳(メタデータ) (2022-02-11T13:49:51Z) - PLM: Partial Label Masking for Imbalanced Multi-label Classification [59.68444804243782]
長いラベルの分布を持つ実世界のデータセットで訓練されたニューラルネットワークは、頻繁なクラスに偏りがあり、頻繁なクラスでは不十分である。
本稿では,この比率を利用したPLM(Partial Label Masking)を提案する。
本手法は,マルチラベル (MultiMNIST と MSCOCO) とシングルラベル (CIFAR-10 と CIFAR-100) の2つの画像分類データセットにおいて,既存の手法と比較して高い性能を実現する。
論文 参考訳(メタデータ) (2021-05-22T18:07:56Z) - SetConv: A New Approach for Learning from Imbalanced Data [29.366843553056594]
集合畳み込み操作とエピソード学習戦略を提案し,各クラスに1つの代表を抽出する。
提案アルゴリズムは入力順序に関わらず置換不変であることを示す。
論文 参考訳(メタデータ) (2021-04-03T22:33:30Z) - M2m: Imbalanced Classification via Major-to-minor Translation [79.09018382489506]
ほとんどの実世界のシナリオでは、ラベル付きトレーニングデータセットは非常にクラス不均衡であり、ディープニューラルネットワークは、バランスの取れたテスト基準への一般化に苦しむ。
本稿では,より頻度の低いクラスを,より頻度の低いクラスからのサンプルを翻訳することによって,この問題を緩和する新しい方法を提案する。
提案手法は,従来の再サンプリング法や再重み付け法と比較して,マイノリティクラスの一般化を著しく改善することを示す。
論文 参考訳(メタデータ) (2020-04-01T13:21:17Z) - VaB-AL: Incorporating Class Imbalance and Difficulty with Variational
Bayes for Active Learning [38.33920705605981]
本研究では,クラス不均衡をアクティブラーニングフレームワークに自然に組み込む手法を提案する。
提案手法は,複数の異なるデータセットのタスク分類に適用可能であることを示す。
論文 参考訳(メタデータ) (2020-03-25T07:34:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。