論文の概要: Closing the Gender Wage Gap: Adversarial Fairness in Job Recommendation
- arxiv url: http://arxiv.org/abs/2209.09592v1
- Date: Tue, 20 Sep 2022 10:11:40 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-21 18:53:40.378081
- Title: Closing the Gender Wage Gap: Adversarial Fairness in Job Recommendation
- Title(参考訳): ジェンダーワージギャップの閉鎖--求職勧告における相手の公正性
- Authors: Clara Rus, Jeffrey Luppes, Harrie Oosterhuis, Gido H. Schoenmacker
- Abstract要約: 本研究は、求職者の履歴書に基づいて、偏見のない求職勧告を提供することで、既存の男女賃金格差を緩和することを目的とする。
12万件の求人テキストと900万件の履歴書のWord2vec表現から、性別バイアスを除去するために、生成的対人ネットワークを用いている。
- 参考スコア(独自算出の注目度): 10.227479910430866
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The goal of this work is to help mitigate the already existing gender wage
gap by supplying unbiased job recommendations based on resumes from job
seekers. We employ a generative adversarial network to remove gender bias from
word2vec representations of 12M job vacancy texts and 900k resumes. Our results
show that representations created from recruitment texts contain algorithmic
bias and that this bias results in real-world consequences for recommendation
systems. Without controlling for bias, women are recommended jobs with
significantly lower salary in our data. With adversarially fair
representations, this wage gap disappears, meaning that our debiased job
recommendations reduce wage discrimination. We conclude that adversarial
debiasing of word representations can increase real-world fairness of systems
and thus may be part of the solution for creating fairness-aware recommendation
systems.
- Abstract(参考訳): 本研究の目的は、求職者の履歴書に基づいて、偏見のない求人推薦を提供することで、既存の男女賃金格差を緩和することである。
我々は,1200万のジョブ空白テキストと900万の履歴書のword2vec表現からジェンダーバイアスを取り除くために,生成型adversarial networkを用いる。
その結果,採用テキストから生成された表現にはアルゴリズム的バイアスが伴い,このバイアスはレコメンデーションシステムに現実的な結果をもたらすことがわかった。
偏りをコントロールできなければ、女性は私たちのデータでかなり低い給与で推奨される仕事です。
反対に公正な表現では、この賃金格差は消滅し、偏った雇用勧告によって賃金差別が減ることを意味する。
単語表現の逆偏りは、システムの現実的公正性を高めることができるため、公平性を考慮したレコメンデーションシステムを構築するためのソリューションの一部である可能性がある。
関連論文リスト
- The Root Shapes the Fruit: On the Persistence of Gender-Exclusive Harms in Aligned Language Models [58.130894823145205]
我々はトランスジェンダー、ノンバイナリ、その他のジェンダー・ディバースのアイデンティティを中心とし、アライメント手順が既存のジェンダー・ディバースバイアスとどのように相互作用するかを検討する。
以上の結果から,DPO対応モデルは特に教師付き微調整に敏感であることが示唆された。
DPOとより広範なアライメントプラクティスに合わせたレコメンデーションで締めくくります。
論文 参考訳(メタデータ) (2024-11-06T06:50:50Z) - Revealing and Reducing Gender Biases in Vision and Language Assistants (VLAs) [82.57490175399693]
画像・テキスト・ビジョン言語アシスタント(VLA)22種における性別バイアスの検討
以上の結果から,VLAは実世界の作業不均衡など,データ中の人間のバイアスを再現する可能性が示唆された。
これらのモデルにおける性別バイアスを排除するため、微調整に基づくデバイアス法は、下流タスクにおけるデバイアスとパフォーマンスの最良のトレードオフを実現する。
論文 参考訳(メタデータ) (2024-10-25T05:59:44Z) - GenderBias-\emph{VL}: Benchmarking Gender Bias in Vision Language Models via Counterfactual Probing [72.0343083866144]
本稿では,GenderBias-emphVLベンチマークを用いて,大規模視覚言語モデルにおける職業関連性バイアスの評価を行う。
ベンチマークを用いて15のオープンソースLVLMと最先端の商用APIを広範囲に評価した。
既存のLVLMでは男女差が広くみられた。
論文 参考訳(メタデータ) (2024-06-30T05:55:15Z) - JobFair: A Framework for Benchmarking Gender Hiring Bias in Large Language Models [12.12628747941818]
本稿では,Large Language Models (LLMs) における階層的ジェンダー採用バイアスのベンチマークを行うための新しいフレームワークを提案する。
我々は、労働経済学、法原則、現在のバイアスベンチマークの批判に根ざした新しい構成を導入する。
我々は、現在最先端の10のLCMにおける性別採用バイアスを分析する。
論文 参考訳(メタデータ) (2024-06-17T09:15:57Z) - The Impact of Debiasing on the Performance of Language Models in
Downstream Tasks is Underestimated [70.23064111640132]
我々は、幅広いベンチマークデータセットを用いて、複数の下流タスクのパフォーマンスに対するデバイアスの影響を比較した。
実験により、デバイアスの効果は全てのタスクにおいて一貫して見積もられていることが示されている。
論文 参考訳(メタデータ) (2023-09-16T20:25:34Z) - The Resume Paradox: Greater Language Differences, Smaller Pay Gaps [0.0]
我々は、この言葉を何百万人ものアメリカ人労働者の履歴書で分析し、労働者のジェンダーによる自己表現の違いが、収入の違いとどのように比較されるかを調べる。
米国の職業全体において、男女間の言語の違いは男女の賃金格差の11%に相当する。
男女間の言語差が2倍になれば、平均的な女性労働者の年収は2797ドルになる。
論文 参考訳(メタデータ) (2023-07-17T15:49:35Z) - Gendered Language in Resumes and its Implications for Algorithmic Bias
in Hiring [0.0]
我々は応募者の性別を分類するために一連のモデルを訓練する。
我々は、履歴書から性別を難読化できるかどうか検討する。
難読化後も履歴書には男女情報が多く存在することが判明した。
論文 参考訳(メタデータ) (2021-12-16T14:26:36Z) - Auditing for Discrimination in Algorithms Delivering Job Ads [70.02478301291264]
我々は,求人広告配信における識別アルゴリズムのブラックボックス監査のための新しい手法を開発した。
最初のコントリビューションは、性別や人種などの保護されたカテゴリーによる、広告配信における歪の区別です。
第2に,他の要因と資格の違いによって説明可能なスクリューを区別する監査手法を開発する。
第3に、提案手法を求人広告のための2つの主要なターゲット広告プラットフォーム、FacebookとLinkedInに適用する。
論文 参考訳(メタデータ) (2021-04-09T17:38:36Z) - Nurse is Closer to Woman than Surgeon? Mitigating Gender-Biased
Proximities in Word Embeddings [37.65897382453336]
単語ベクターの空間配置に隠された性別バイアスを緩和することは,既存の単語埋め込みの処理方法では不可能である。
我々は,単語ベクトルに存在するバイアスを排除し,隣接するベクトルの空間分布を変化させる,新しいジェンダーデバイアス手法であるRAN-Debiasを提案する。
我々はまた、新しいバイアス評価指標、ジェンダーベースIllicit Proximity Estimate (GIPE)を提案する。
論文 参考訳(メタデータ) (2020-06-02T20:50:43Z) - Multi-Dimensional Gender Bias Classification [67.65551687580552]
機械学習モデルは、性別に偏ったテキストでトレーニングする際に、社会的に望ましくないパターンを不注意に学習することができる。
本稿では,テキスト中の性バイアスを複数の実用的・意味的な次元に沿って分解する一般的な枠組みを提案する。
このきめ細かいフレームワークを用いて、8つの大規模データセットにジェンダー情報を自動的にアノテートする。
論文 参考訳(メタデータ) (2020-05-01T21:23:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。