Seq2Seq Surrogates of Epidemic Models to Facilitate Bayesian Inference
- URL: http://arxiv.org/abs/2209.09617v1
- Date: Tue, 20 Sep 2022 11:23:19 GMT
- Title: Seq2Seq Surrogates of Epidemic Models to Facilitate Bayesian Inference
- Authors: Giovanni Charles, Timothy M. Wolock, Peter Winskill, Azra Ghani, Samir
Bhatt, Seth Flaxman
- Abstract summary: We show that deep sequence-to-sequence (seq2seq) models can serve as accurate surrogates for complex epidemic models.
Once trained, our surrogate can predict scenarios a several thousand times faster than the original model.
- Score: 0.6524460254566905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Epidemic models are powerful tools in understanding infectious disease.
However, as they increase in size and complexity, they can quickly become
computationally intractable. Recent progress in modelling methodology has shown
that surrogate models can be used to emulate complex epidemic models with a
high-dimensional parameter space. We show that deep sequence-to-sequence
(seq2seq) models can serve as accurate surrogates for complex epidemic models
with sequence based model parameters, effectively replicating seasonal and
long-term transmission dynamics. Once trained, our surrogate can predict
scenarios a several thousand times faster than the original model, making them
ideal for policy exploration. We demonstrate that replacing a traditional
epidemic model with a learned simulator facilitates robust Bayesian inference.
Related papers
- Towards Graph Neural Network Surrogates Leveraging Mechanistic Expert Knowledge for Pandemic Response [41.94295877935867]
We build upon a spatially and demographically resolved infectious disease model and train a graph neural network for data sets representing early phases of the pandemic.
The suggested approach yields potential for on-the-fly execution and, thus, integration of disease dynamics models in low-barrier website applications.
arXiv Detail & Related papers (2024-11-10T15:54:09Z) - On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
We investigate the performance of the least squares estimators (LSE) under a deterministic MoE model.
We establish a condition called strong identifiability to characterize the convergence behavior of various types of expert functions.
Our findings have important practical implications for expert selection.
arXiv Detail & Related papers (2024-02-05T12:31:18Z) - Fine-Tuning Generative Models as an Inference Method for Robotic Tasks [18.745665662647912]
We investigate how to quickly adapt the sample generation of neural network models to observations in robotic tasks.
The key idea is to quickly fine-tune the model by fitting it to generated samples matching the observed evidence.
We show that our method can be applied to both autoregressive models and variational autoencoders.
arXiv Detail & Related papers (2023-10-19T16:11:49Z) - Neural Superstatistics for Bayesian Estimation of Dynamic Cognitive
Models [2.7391842773173334]
We develop a simulation-based deep learning method for Bayesian inference, which can recover both time-varying and time-invariant parameters.
Our results show that the deep learning approach is very efficient in capturing the temporal dynamics of the model.
arXiv Detail & Related papers (2022-11-23T17:42:53Z) - On the Generalization and Adaption Performance of Causal Models [99.64022680811281]
Differentiable causal discovery has proposed to factorize the data generating process into a set of modules.
We study the generalization and adaption performance of such modular neural causal models.
Our analysis shows that the modular neural causal models outperform other models on both zero and few-shot adaptation in low data regimes.
arXiv Detail & Related papers (2022-06-09T17:12:32Z) - Low-Rank Constraints for Fast Inference in Structured Models [110.38427965904266]
This work demonstrates a simple approach to reduce the computational and memory complexity of a large class of structured models.
Experiments with neural parameterized structured models for language modeling, polyphonic music modeling, unsupervised grammar induction, and video modeling show that our approach matches the accuracy of standard models at large state spaces.
arXiv Detail & Related papers (2022-01-08T00:47:50Z) - Unifying Epidemic Models with Mixtures [28.771032745045428]
The COVID-19 pandemic has emphasized the need for a robust understanding of epidemic models.
Here, we introduce a simple mixture-based model which bridges the two approaches.
Although the model is non-mechanistic, we show that it arises as the natural outcome of a process based on a networked SIR framework.
arXiv Detail & Related papers (2022-01-07T19:42:05Z) - Closed-form Continuous-Depth Models [99.40335716948101]
Continuous-depth neural models rely on advanced numerical differential equation solvers.
We present a new family of models, termed Closed-form Continuous-depth (CfC) networks, that are simple to describe and at least one order of magnitude faster.
arXiv Detail & Related papers (2021-06-25T22:08:51Z) - Discrepancies in Epidemiological Modeling of Aggregated Heterogeneous
Data [1.433758865948252]
We show that state-of-the-art models for estimating epidemiological parameters, e.g.transmission rates, can be inappropriate when faced with complex systems.
We generate three complex outbreak scenarios by combining incidence curves from multiple epidemics.
We evaluate two data-generating models within this Bayesian inference framework.
arXiv Detail & Related papers (2021-06-20T03:41:19Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z) - Hybrid modeling: Applications in real-time diagnosis [64.5040763067757]
We outline a novel hybrid modeling approach that combines machine learning inspired models and physics-based models.
We are using such models for real-time diagnosis applications.
arXiv Detail & Related papers (2020-03-04T00:44:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.