論文の概要: Multi-time Predictions of Wildfire Grid Map using Remote Sensing Local
Data
- arxiv url: http://arxiv.org/abs/2209.10102v1
- Date: Thu, 15 Sep 2022 22:34:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-25 17:22:25.613865
- Title: Multi-time Predictions of Wildfire Grid Map using Remote Sensing Local
Data
- Title(参考訳): リモートセンシングローカルデータを用いたワイルドファイアグリッドマップのマルチタイム予測
- Authors: Hyung-Jin Yoon and Petros Voulgaris
- Abstract要約: 本稿では,米国西部の10か所で収集されたローカルデータをローカルエージェントで共有する分散学習フレームワークを提案する。
提案モデルには,動的オンライン推定や時系列モデリングなど,予測評価における特徴的ニーズに対処する特徴がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Due to recent climate changes, we have seen more frequent and severe
wildfires in the United States. Predicting wildfires is critical for natural
disaster prevention and mitigation. Advances in technologies in data processing
and communication enabled us to access remote sensing data. With the remote
sensing data, valuable spatiotemporal statistical models can be created and
used for resource management practices. This paper proposes a distributed
learning framework that shares local data collected in ten locations in the
western USA throughout the local agents. The local agents aim to predict
wildfire grid maps one, two, three, and four weeks in advance while online
processing the remote sensing data stream. The proposed model has distinct
features that address the characteristic need in prediction evaluations,
including dynamic online estimation and time-series modeling. Local fire event
triggers are not isolated between locations, and there are confounding factors
when local data is analyzed due to incomplete state observations. Compared to
existing approaches that do not account for incomplete state observation within
wildfire time-series data, on average, we can achieve higher prediction
performance.
- Abstract(参考訳): 近年の気候変動により、米国ではより頻繁で厳しい山火事が起きている。
森林火災の予測は自然災害の予防と緩和に重要である。
データ処理と通信技術の進歩により、リモートセンシングデータへのアクセスが可能になった。
リモートセンシングデータでは、貴重な時空間統計モデルを作成し、リソース管理のプラクティスに使用できる。
本稿では,米国西部の10か所で収集されたローカルデータをローカルエージェントで共有する分散学習フレームワークを提案する。
ローカルエージェントは、リモートセンシングデータストリームをオンラインで処理している間、1、2、3、4週間前にwildfireグリッドマップを事前に予測することを目指している。
提案モデルは,動的オンライン推定や時系列モデリングなど,予測評価における特性ニーズに対応する特徴を有する。
局所的な火災イベントトリガーは場所間では分離されず、不完全な状態観測によって局所的なデータが分析される際には、相反する要因が存在する。
wildfire時系列データ内の不完全な状態観測を考慮しない既存のアプローチと比較して、平均して高い予測性能を達成できる。
関連論文リスト
- PeFAD: A Parameter-Efficient Federated Framework for Time Series Anomaly Detection [51.20479454379662]
私たちはaを提案します。
フェデレートされた異常検出フレームワークであるPeFADは、プライバシーの懸念が高まっている。
我々は、4つの実際のデータセットに対して広範な評価を行い、PeFADは既存の最先端ベースラインを最大28.74%上回っている。
論文 参考訳(メタデータ) (2024-06-04T13:51:08Z) - Rapid Wildfire Hotspot Detection Using Self-Supervised Learning on Temporal Remote Sensing Data [0.12289361708127873]
衛星ネットワークや高度なAIモデルからリモートセンシングされたデータを活用して、ホットスポットを自動的に検出することは、山火事モニタリングシステムを構築する効果的な方法である。
本稿では,欧州の火災イベントに関連するリモートセンシングデータの時系列を含む新しいデータセットと,多時期データを解析し,潜在的にほぼリアルタイムにホットスポットを識別できる自己監視学習(SSL)モデルを提案する。
我々は、我々のデータセットといくつかの火災イベントを含む熱異常のデータセットであるThrawsを用いて、モデルの性能を訓練し、評価し、F1スコア63.58を得る。
論文 参考訳(メタデータ) (2024-05-30T14:31:46Z) - Spatial-temporal Forecasting for Regions without Observations [13.805203053973772]
本研究では,歴史的観察を伴わない関心領域の時空間予測について検討した。
タスクに対してSTSMというモデルを提案する。
私たちの重要な洞察は、関心のある領域に類似している場所から学ぶことです。
論文 参考訳(メタデータ) (2024-01-19T06:26:05Z) - Streaming Motion Forecasting for Autonomous Driving [71.7468645504988]
ストリーミングデータにおける将来の軌跡を問うベンチマークを導入し,これを「ストリーミング予測」と呼ぶ。
我々のベンチマークは本質的に、スナップショットベースのベンチマークでは見過ごされていない安全上の問題であるエージェントの消失と再出現を捉えている。
我々は,任意のスナップショットベースの予測器をストリーミング予測器に適応させることのできる,"Predictive Streamer"と呼ばれるプラグアンドプレイメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-02T17:13:16Z) - Wild-Time: A Benchmark of in-the-Wild Distribution Shift over Time [69.77704012415845]
時間的シフトは、現実世界にデプロイされた機械学習モデルのパフォーマンスを著しく低下させる可能性がある。
ドメイン一般化、連続学習、自己教師付き学習、アンサンブル学習の手法を含む13の先行手法をベンチマークする。
いずれの評価方略も,分布外データから分布外データへの平均的な性能低下を観察する。
論文 参考訳(メタデータ) (2022-11-25T17:07:53Z) - Forecasting Unobserved Node States with spatio-temporal Graph Neural
Networks [1.0965065178451106]
本研究では,空間的時間的相関とグラフ帰納バイアスに基づいて,完全に観測されていない位置の状態を予測できるフレームワークを開発した。
我々のフレームワークは、ネットワークのグラフ構造を用いて、観測された位置と周囲の相関を悪用するグラフニューラルネットワークと組み合わせることができる。
シミュレーションと実世界の両方のデータセットに対する実証的な評価は、グラフニューラルネットワークがこのタスクに適していることを示している。
論文 参考訳(メタデータ) (2022-11-21T15:52:06Z) - Next Day Wildfire Spread: A Machine Learning Data Set to Predict
Wildfire Spreading from Remote-Sensing Data [5.814925201882753]
Next Day Wildfire Spread」は、アメリカ全土で10年近くにわたってリモートセンシングされたデータを収集した、歴史的な山火事の収集データである。
我々は、このデータの空間情報を利用して、山火事の拡散を予測する畳み込みオートエンコーダを実装した。
このデータセットは、リモートセンシングデータに基づく1日のリードタイムに基づく山火事伝播モデル開発のためのベンチマークとして使用することができる。
論文 参考訳(メタデータ) (2021-12-04T23:28:44Z) - Learning Wildfire Model from Incomplete State Observations [0.0]
我々は、深層ニューラルネットワークを用いて、米国西部の5か所の将来の山火事予測のための動的モデルを作成します。
提案モデルには,動的オンライン推定や時系列モデリングなど,予測評価における特徴的ニーズに対処する特徴がある。
論文 参考訳(メタデータ) (2021-11-28T03:21:46Z) - Lidar Light Scattering Augmentation (LISA): Physics-based Simulation of
Adverse Weather Conditions for 3D Object Detection [60.89616629421904]
ライダーベースの物体検出器は、自動運転車のような自律ナビゲーションシステムにおいて、3D知覚パイプラインの重要な部分である。
降雨、雪、霧などの悪天候に敏感で、信号-雑音比(SNR)と信号-背景比(SBR)が低下している。
論文 参考訳(メタデータ) (2021-07-14T21:10:47Z) - Seasonal Contrast: Unsupervised Pre-Training from Uncurated Remote
Sensing Data [64.40187171234838]
季節的コントラスト(SeCo)は、リモートセンシング表現のドメイン内事前トレーニングにラベルのないデータを活用するための効果的なパイプラインである。
SeCoは、転送学習を容易にし、再リモートセンシングアプリケーションの急速な進歩を可能にするために公開されます。
論文 参考訳(メタデータ) (2021-03-30T18:26:39Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
視覚データに対する推論は、ロボティクスとビジョンベースのアプリケーションにとって望ましい能力である。
本稿では,歩行者の意図を推論するため,現場の異なる物体間の関係を明らかにするためのグラフ上でのフレームワークを提案する。
歩行者の意図は、通りを横切る、あるいは横断しない将来の行動として定義され、自動運転車にとって非常に重要な情報である。
論文 参考訳(メタデータ) (2020-02-20T18:50:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。