論文の概要: Forecasting Unobserved Node States with spatio-temporal Graph Neural
Networks
- arxiv url: http://arxiv.org/abs/2211.11596v1
- Date: Mon, 21 Nov 2022 15:52:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-22 22:02:16.748728
- Title: Forecasting Unobserved Node States with spatio-temporal Graph Neural
Networks
- Title(参考訳): 時空間グラフニューラルネットワークによる未観測ノード状態の予測
- Authors: Andreas Roth, Thomas Liebig
- Abstract要約: 本研究では,空間的時間的相関とグラフ帰納バイアスに基づいて,完全に観測されていない位置の状態を予測できるフレームワークを開発した。
我々のフレームワークは、ネットワークのグラフ構造を用いて、観測された位置と周囲の相関を悪用するグラフニューラルネットワークと組み合わせることができる。
シミュレーションと実世界の両方のデータセットに対する実証的な評価は、グラフニューラルネットワークがこのタスクに適していることを示している。
- 参考スコア(独自算出の注目度): 1.0965065178451106
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Forecasting future states of sensors is key to solving tasks like weather
prediction, route planning, and many others when dealing with networks of
sensors. But complete spatial coverage of sensors is generally unavailable and
would practically be infeasible due to limitations in budget and other
resources during deployment and maintenance. Currently existing approaches
using machine learning are limited to the spatial locations where data was
observed, causing limitations to downstream tasks. Inspired by the recent surge
of Graph Neural Networks for spatio-temporal data processing, we investigate
whether these can also forecast the state of locations with no sensors
available. For this purpose, we develop a framework, named Forecasting
Unobserved Node States (FUNS), that allows forecasting the state at entirely
unobserved locations based on spatio-temporal correlations and the graph
inductive bias. FUNS serves as a blueprint for optimizing models only on
observed data and demonstrates good generalization capabilities for predicting
the state at entirely unobserved locations during the testing stage. Our
framework can be combined with any spatio-temporal Graph Neural Network, that
exploits spatio-temporal correlations with surrounding observed locations by
using the network's graph structure. Our employed model builds on a previous
model by also allowing us to exploit prior knowledge about locations of
interest, e.g. the road type. Our empirical evaluation of both simulated and
real-world datasets demonstrates that Graph Neural Networks are well-suited for
this task.
- Abstract(参考訳): センサーの将来の状態を予測することは、天気予報や経路計画など、センサーのネットワークを扱う多くの課題を解決する上で鍵となる。
しかし、センサーの完全な空間範囲は一般には利用不可能であり、展開やメンテナンスの際の予算やその他のリソースの制限のために事実上不可能である。
現在、機械学習を用いた既存のアプローチは、データが観測された空間的な場所に限定されており、下流タスクに制限が生じる。
近年の時空間データ処理のためのグラフニューラルネットワークの急増に触発されて,センサを使わずに位置を予測できるかどうか検討した。
この目的のために、時空間相関とグラフ帰納バイアスに基づいて、完全に観測されていない場所で状態を予測できるフレームワーク、Forecasting Unobserved Node States (FUNS) を開発した。
FUNSは観測データのみをモデルに最適化するための青写真として機能し、テスト段階では完全に観測されていない場所で状態を予測できる優れた一般化機能を示している。
本手法は,ネットワークのグラフ構造を用いて周辺観測位置との時空間相関を利用する時空間グラフニューラルネットワークと組み合わせることができる。
我々の採用モデルは、道路タイプなど、関心のある場所に関する事前知識を活用できるように、以前のモデルに基づいて構築されている。
シミュレーションと実世界の両方のデータセットに対する実証的な評価は、グラフニューラルネットワークがこのタスクに適していることを示している。
関連論文リスト
- Spatial-temporal Forecasting for Regions without Observations [13.805203053973772]
本研究では,歴史的観察を伴わない関心領域の時空間予測について検討した。
タスクに対してSTSMというモデルを提案する。
私たちの重要な洞察は、関心のある領域に類似している場所から学ぶことです。
論文 参考訳(メタデータ) (2024-01-19T06:26:05Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
ロボット工学、自動運転車、ナビゲーションなどの分野で使用される軌道予測モデルは、現実のシナリオにおいて課題に直面している。
このデータセットは、ロボットの観点から、すべてのエージェント、シーンイメージ、ポイントクラウドの位置を含む包括的なデータを提供する。
本研究の目的は,ロボットに対するエージェントの将来の位置を,生の感覚入力データを用いて予測することである。
論文 参考訳(メタデータ) (2023-11-05T18:59:31Z) - Implicit Occupancy Flow Fields for Perception and Prediction in
Self-Driving [68.95178518732965]
自動運転車(SDV)は、周囲を認識でき、他の交通参加者の将来の行動を予測できなければならない。
既存の作業は、検出されたオブジェクトの軌跡が続くオブジェクト検出を実行するか、シーン全体の密度の高い占有とフローグリッドを予測するかのいずれかである。
これは、認識と将来の予測に対する統一されたアプローチを動機付け、単一のニューラルネットワークで時間とともに占有とフローを暗黙的に表現します。
論文 参考訳(メタデータ) (2023-08-02T23:39:24Z) - Learning Dynamic Graphs from All Contextual Information for Accurate
Point-of-Interest Visit Forecasting [9.670949636600035]
Busyness Graph Neural Network (BysGNN) は、基礎となるマルチコンテキスト相関を学習し、発見するために設計された時間グラフニューラルネットワークである。
文脈的,時間的,空間的な信号をすべて取り入れることで,最先端の予測モデルに対する予測精度の大幅な向上を観察する。
論文 参考訳(メタデータ) (2023-06-28T05:14:03Z) - Deep Learning for Day Forecasts from Sparse Observations [60.041805328514876]
深層ニューラルネットワークは、気象条件をモデル化するための代替パラダイムを提供する。
MetNet-3は、密度とスパースの両方のデータセンサーから学習し、降水、風、温度、露点を最大24時間前に予測する。
MetNet-3は、それぞれ時間分解能と空間分解能が高く、最大2分と1km、運用遅延は低い。
論文 参考訳(メタデータ) (2023-06-06T07:07:54Z) - Graph Neural Processes for Spatio-Temporal Extrapolation [36.01312116818714]
グラフ内の周囲のコンテキストから対象地点のデータを生成する補間時間プロセスのタスクについて検討する。
既存の手法では、ニューラルネットワークのような学習に精通したモデルや、ガウスのような統計的アプローチが使用されている。
本稿では,これらの機能を同時に制御するニューラル潜在変数モデルであるスポースグラフニューラル・プロセス(STGNP)を提案する。
論文 参考訳(メタデータ) (2023-05-30T03:55:37Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
軌道予測は、観測されたシーケンスから実体運動や人間の行動を理解する上で重要な作業である。
現在の方法では、観測されたシーケンスが完了したと仮定し、欠落した値の可能性を無視する。
本稿では,グラフに基づく条件変動リカレントニューラルネットワーク (GC-VRNN) の統一フレームワークを提案する。
論文 参考訳(メタデータ) (2023-03-28T14:27:27Z) - Graph Convolutional Networks for Traffic Forecasting with Missing Values [0.5774786149181392]
時空間における複雑な欠落値を扱うことのできるグラフ畳み込みネットワークモデルを提案する。
学習した局所的特徴に基づく動的グラフ学習モジュールも提案する。
実生活データセットに対する実験結果から,提案手法の信頼性が示された。
論文 参考訳(メタデータ) (2022-12-13T08:04:38Z) - Multi-time Predictions of Wildfire Grid Map using Remote Sensing Local
Data [0.0]
本稿では,米国西部の10か所で収集されたローカルデータをローカルエージェントで共有する分散学習フレームワークを提案する。
提案モデルには,動的オンライン推定や時系列モデリングなど,予測評価における特徴的ニーズに対処する特徴がある。
論文 参考訳(メタデータ) (2022-09-15T22:34:06Z) - Networked Time Series Prediction with Incomplete Data [59.45358694862176]
我々は、歴史と未来の両方で欠落した値を持つ不完全なデータでトレーニングできる新しいディープラーニングフレームワークであるNetS-ImpGANを提案する。
3つの実世界のデータセットに対して、異なるパターンと欠落率で広範な実験を行う。
論文 参考訳(メタデータ) (2021-10-05T18:20:42Z) - Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction [57.56466850377598]
視覚データに対する推論は、ロボティクスとビジョンベースのアプリケーションにとって望ましい能力である。
本稿では,歩行者の意図を推論するため,現場の異なる物体間の関係を明らかにするためのグラフ上でのフレームワークを提案する。
歩行者の意図は、通りを横切る、あるいは横断しない将来の行動として定義され、自動運転車にとって非常に重要な情報である。
論文 参考訳(メタデータ) (2020-02-20T18:50:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。