Position-Aware Relation Learning for RGB-Thermal Salient Object
Detection
- URL: http://arxiv.org/abs/2209.10158v1
- Date: Wed, 21 Sep 2022 07:34:30 GMT
- Title: Position-Aware Relation Learning for RGB-Thermal Salient Object
Detection
- Authors: Heng Zhou, Chunna Tian, Zhenxi Zhang, Chengyang Li, Yuxuan Ding,
Yongqiang Xie, Zhongbo Li
- Abstract summary: We propose a position-aware relation learning network (PRLNet) for RGB-T SOD based on swin transformer.
PRLNet explores the distance and direction relationships between pixels to strengthen intra-class compactness and inter-class separation.
In addition, we constitute a pure transformer encoder-decoder network to enhance multispectral feature representation for RGB-T SOD.
- Score: 3.115635707192086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: RGB-Thermal salient object detection (SOD) combines two spectra to segment
visually conspicuous regions in images. Most existing methods use boundary maps
to learn the sharp boundary. These methods ignore the interactions between
isolated boundary pixels and other confident pixels, leading to sub-optimal
performance. To address this problem,we propose a position-aware relation
learning network (PRLNet) for RGB-T SOD based on swin transformer. PRLNet
explores the distance and direction relationships between pixels to strengthen
intra-class compactness and inter-class separation, generating salient object
masks with clear boundaries and homogeneous regions. Specifically, we develop a
novel signed distance map auxiliary module (SDMAM) to improve encoder feature
representation, which takes into account the distance relation of different
pixels in boundary neighborhoods. Then, we design a feature refinement approach
with directional field (FRDF), which rectifies features of boundary
neighborhood by exploiting the features inside salient objects. FRDF utilizes
the directional information between object pixels to effectively enhance the
intra-class compactness of salient regions. In addition, we constitute a pure
transformer encoder-decoder network to enhance multispectral feature
representation for RGB-T SOD. Finally, we conduct quantitative and qualitative
experiments on three public benchmark datasets.The results demonstrate that our
proposed method outperforms the state-of-the-art methods.
Related papers
- Frequency-Spatial Entanglement Learning for Camouflaged Object Detection [34.426297468968485]
Existing methods attempt to reduce the impact of pixel similarity by maximizing the distinguishing ability of spatial features with complicated design.
We propose a new approach to address this issue by jointly exploring the representation in the frequency and spatial domains, introducing the Frequency-Spatial Entanglement Learning (FSEL) method.
Our experiments demonstrate the superiority of our FSEL over 21 state-of-the-art methods, through comprehensive quantitative and qualitative comparisons in three widely-used datasets.
arXiv Detail & Related papers (2024-09-03T07:58:47Z) - Optimizing rgb-d semantic segmentation through multi-modal interaction
and pooling attention [5.518612382697244]
Multi-modal Interaction and Pooling Attention Network (MIPANet) is designed to harness the interactive synergy between RGB and depth modalities.
We introduce a Pooling Attention Module (PAM) at various stages of the encoder.
This module serves to amplify the features extracted by the network and integrates the module's output into the decoder.
arXiv Detail & Related papers (2023-11-19T12:25:59Z) - HiDAnet: RGB-D Salient Object Detection via Hierarchical Depth Awareness [2.341385717236931]
We propose a novel Hierarchical Depth Awareness network (HiDAnet) for RGB-D saliency detection.
Our motivation comes from the observation that the multi-granularity properties of geometric priors correlate well with the neural network hierarchies.
Our HiDAnet performs favorably over the state-of-the-art methods by large margins.
arXiv Detail & Related papers (2023-01-18T10:00:59Z) - Feature Aggregation and Propagation Network for Camouflaged Object
Detection [42.33180748293329]
Camouflaged object detection (COD) aims to detect/segment camouflaged objects embedded in the environment.
Several COD methods have been developed, but they still suffer from unsatisfactory performance due to intrinsic similarities between foreground objects and background surroundings.
We propose a novel Feature Aggregation and propagation Network (FAP-Net) for camouflaged object detection.
arXiv Detail & Related papers (2022-12-02T05:54:28Z) - CIR-Net: Cross-modality Interaction and Refinement for RGB-D Salient
Object Detection [144.66411561224507]
We present a convolutional neural network (CNN) model, named CIR-Net, based on the novel cross-modality interaction and refinement.
Our network outperforms the state-of-the-art saliency detectors both qualitatively and quantitatively.
arXiv Detail & Related papers (2022-10-06T11:59:19Z) - Cross-modality Discrepant Interaction Network for RGB-D Salient Object
Detection [78.47767202232298]
We propose a novel Cross-modality Discrepant Interaction Network (CDINet) for RGB-D SOD.
Two components are designed to implement the effective cross-modality interaction.
Our network outperforms $15$ state-of-the-art methods both quantitatively and qualitatively.
arXiv Detail & Related papers (2021-08-04T11:24:42Z) - EPMF: Efficient Perception-aware Multi-sensor Fusion for 3D Semantic Segmentation [62.210091681352914]
We study multi-sensor fusion for 3D semantic segmentation for many applications, such as autonomous driving and robotics.
In this work, we investigate a collaborative fusion scheme called perception-aware multi-sensor fusion (PMF)
We propose a two-stream network to extract features from the two modalities separately. The extracted features are fused by effective residual-based fusion modules.
arXiv Detail & Related papers (2021-06-21T10:47:26Z) - AINet: Association Implantation for Superpixel Segmentation [82.21559299694555]
We propose a novel textbfAssociation textbfImplantation (AI) module to enable the network to explicitly capture the relations between the pixel and its surrounding grids.
Our method could not only achieve state-of-the-art performance but maintain satisfactory inference efficiency.
arXiv Detail & Related papers (2021-01-26T10:40:13Z) - Bi-directional Cross-Modality Feature Propagation with
Separation-and-Aggregation Gate for RGB-D Semantic Segmentation [59.94819184452694]
Depth information has proven to be a useful cue in the semantic segmentation of RGBD images for providing a geometric counterpart to the RGB representation.
Most existing works simply assume that depth measurements are accurate and well-aligned with the RGB pixels and models the problem as a cross-modal feature fusion.
In this paper, we propose a unified and efficient Crossmodality Guided to not only effectively recalibrate RGB feature responses, but also to distill accurate depth information via multiple stages and aggregate the two recalibrated representations alternatively.
arXiv Detail & Related papers (2020-07-17T18:35:24Z) - Saliency Enhancement using Gradient Domain Edges Merging [65.90255950853674]
We develop a method to merge the edges with the saliency maps to improve the performance of the saliency.
This leads to our proposed saliency enhancement using edges (SEE) with an average improvement of at least 3.4 times higher on the DUT-OMRON dataset.
The SEE algorithm is split into 2 parts, SEE-Pre for preprocessing and SEE-Post pour postprocessing.
arXiv Detail & Related papers (2020-02-11T14:04:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.