Is More Data Better? Re-thinking the Importance of Efficiency in Abusive
Language Detection with Transformers-Based Active Learning
- URL: http://arxiv.org/abs/2209.10193v1
- Date: Wed, 21 Sep 2022 08:47:06 GMT
- Title: Is More Data Better? Re-thinking the Importance of Efficiency in Abusive
Language Detection with Transformers-Based Active Learning
- Authors: Hannah Rose Kirk, Bertie Vidgen, Scott A. Hale
- Abstract summary: We show that transformers-based active learning is a promising approach to substantially raise efficiency whilst still maintaining high effectiveness.
This approach requires a fraction of labeled data to reach performance equivalent to training over the full dataset.
- Score: 13.369630848913305
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Annotating abusive language is expensive, logistically complex and creates a
risk of psychological harm. However, most machine learning research has
prioritized maximizing effectiveness (i.e., F1 or accuracy score) rather than
data efficiency (i.e., minimizing the amount of data that is annotated). In
this paper, we use simulated experiments over two datasets at varying
percentages of abuse to demonstrate that transformers-based active learning is
a promising approach to substantially raise efficiency whilst still maintaining
high effectiveness, especially when abusive content is a smaller percentage of
the dataset. This approach requires a fraction of labeled data to reach
performance equivalent to training over the full dataset.
Related papers
- A CLIP-Powered Framework for Robust and Generalizable Data Selection [51.46695086779598]
Real-world datasets often contain redundant and noisy data, imposing a negative impact on training efficiency and model performance.
Data selection has shown promise in identifying the most representative samples from the entire dataset.
We propose a novel CLIP-powered data selection framework that leverages multimodal information for more robust and generalizable sample selection.
arXiv Detail & Related papers (2024-10-15T03:00:58Z) - Fine-tuning can Help Detect Pretraining Data from Large Language Models [7.7209640786782385]
Current methods differentiate members and non-members by designing scoring functions, like Perplexity and Min-k%.
We introduce a novel and effective method termed Fine-tuned Score Deviation (FSD), which improves the performance of current scoring functions for pretraining data detection.
arXiv Detail & Related papers (2024-10-09T15:36:42Z) - LESS: Selecting Influential Data for Targeted Instruction Tuning [64.78894228923619]
We propose LESS, an efficient algorithm to estimate data influences and perform Low-rank gradiEnt Similarity Search for instruction data selection.
We show that training on a LESS-selected 5% of the data can often outperform training on the full dataset across diverse downstream tasks.
Our method goes beyond surface form cues to identify data that the necessary reasoning skills for the intended downstream application.
arXiv Detail & Related papers (2024-02-06T19:18:04Z) - DataInf: Efficiently Estimating Data Influence in LoRA-tuned LLMs and
Diffusion Models [31.65198592956842]
We propose DataInf, an efficient influence approximation method that is practical for large-scale generative AI models.
Our theoretical analysis shows that DataInf is particularly well-suited for parameter-efficient fine-tuning techniques such as LoRA.
In applications to RoBERTa-large, Llama-2-13B-chat, and stable-diffusion-v1.5 models, DataInf effectively identifies the most influential fine-tuning examples better than other approximate influence scores.
arXiv Detail & Related papers (2023-10-02T04:59:19Z) - Understanding Memorization from the Perspective of Optimization via
Efficient Influence Estimation [54.899751055620904]
We study the phenomenon of memorization with turn-over dropout, an efficient method to estimate influence and memorization, for data with true labels (real data) and data with random labels (random data)
Our main findings are: (i) For both real data and random data, the optimization of easy examples (e.g., real data) and difficult examples (e.g., random data) are conducted by the network simultaneously, with easy ones at a higher speed; (ii) For real data, a correct difficult example in the training dataset is more informative than an easy one.
arXiv Detail & Related papers (2021-12-16T11:34:23Z) - Improving Classifier Training Efficiency for Automatic Cyberbullying
Detection with Feature Density [58.64907136562178]
We study the effectiveness of Feature Density (FD) using different linguistically-backed feature preprocessing methods.
We hypothesise that estimating dataset complexity allows for the reduction of the number of required experiments.
The difference in linguistic complexity of datasets allows us to additionally discuss the efficacy of linguistically-backed word preprocessing.
arXiv Detail & Related papers (2021-11-02T15:48:28Z) - Investigating a Baseline Of Self Supervised Learning Towards Reducing
Labeling Costs For Image Classification [0.0]
The study implements the kaggle.com' cats-vs-dogs dataset, Mnist and Fashion-Mnist to investigate the self-supervised learning task.
Results show that the pretext process in the self-supervised learning improves the accuracy around 15% in the downstream classification task.
arXiv Detail & Related papers (2021-08-17T06:43:05Z) - Data Shapley Valuation for Efficient Batch Active Learning [21.76249748709411]
Active Data Shapley (ADS) is a filtering layer for batch active learning.
We show that ADS is particularly effective when the pool of unlabeled data exhibits real-world caveats.
arXiv Detail & Related papers (2021-04-16T18:53:42Z) - GLISTER: Generalization based Data Subset Selection for Efficient and
Robust Learning [11.220278271829699]
We introduce Glister, a GeneraLIzation based data Subset selecTion for Efficient and Robust learning framework.
We propose an iterative online algorithm Glister-Online, which performs data selection iteratively along with the parameter updates.
We show that our framework improves upon state of the art both in efficiency and accuracy (in cases (a) and (c)) and is more efficient compared to other state-of-the-art robust learning algorithms.
arXiv Detail & Related papers (2020-12-19T08:41:34Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
arXiv Detail & Related papers (2020-06-22T14:49:33Z) - Omni-supervised Facial Expression Recognition via Distilled Data [120.11782405714234]
We propose omni-supervised learning to exploit reliable samples in a large amount of unlabeled data for network training.
We experimentally verify that the new dataset can significantly improve the ability of the learned FER model.
To tackle this, we propose to apply a dataset distillation strategy to compress the created dataset into several informative class-wise images.
arXiv Detail & Related papers (2020-05-18T09:36:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.