Robust Information Bottleneck for Task-Oriented Communication with
Digital Modulation
- URL: http://arxiv.org/abs/2209.10382v2
- Date: Tue, 9 May 2023 16:39:32 GMT
- Title: Robust Information Bottleneck for Task-Oriented Communication with
Digital Modulation
- Authors: Songjie Xie, Shuai Ma, Ming Ding, Yuanming Shi, Mingjian Tang, Youlong
Wu
- Abstract summary: Task-oriented communications, mostly using learning-based joint source-channel coding (JSCC), aim to design a communication-efficient edge inference system.
We develop a robust encoding framework, named robust information bottleneck (RIB), to improve the communication robustness to the channel variations.
The proposed DT-JSCC achieves better inference performance than the baseline methods with low communication latency.
- Score: 31.39386509261528
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Task-oriented communications, mostly using learning-based joint
source-channel coding (JSCC), aim to design a communication-efficient edge
inference system by transmitting task-relevant information to the receiver.
However, only transmitting task-relevant information without introducing any
redundancy may cause robustness issues in learning due to the channel
variations, and the JSCC which directly maps the source data into continuous
channel input symbols poses compatibility issues on existing digital
communication systems. In this paper, we address these two issues by first
investigating the inherent tradeoff between the informativeness of the encoded
representations and the robustness to information distortion in the received
representations, and then propose a task-oriented communication scheme with
digital modulation, named discrete task-oriented JSCC (DT-JSCC), where the
transmitter encodes the features into a discrete representation and transmits
it to the receiver with the digital modulation scheme. In the DT-JSCC scheme,
we develop a robust encoding framework, named robust information bottleneck
(RIB), to improve the communication robustness to the channel variations, and
derive a tractable variational upper bound of the RIB objective function using
the variational approximation to overcome the computational intractability of
mutual information. The experimental results demonstrate that the proposed
DT-JSCC achieves better inference performance than the baseline methods with
low communication latency, and exhibits robustness to channel variations due to
the applied RIB framework.
Related papers
- Variational Source-Channel Coding for Semantic Communication [6.55201432222942]
The current semantic communication systems are generally modeled as an Auto-Encoder (AE)
AE lacks a deep integration of AI principles with communication strategies due to its inability to effectively capture channel dynamics.
This paper explores the inclusion of data distortion distinguishes semantic communication from classical communication.
A Variational Source-Channel Coding (VSCC) method is proposed for constructing semantic communication systems.
arXiv Detail & Related papers (2024-09-26T03:42:05Z) - Semantic Communication for Cooperative Perception using HARQ [51.148203799109304]
We leverage an importance map to distill critical semantic information, introducing a cooperative perception semantic communication framework.
To counter the challenges posed by time-varying multipath fading, our approach incorporates the use of frequency-division multiplexing (OFDM) along with channel estimation and equalization strategies.
We introduce a novel semantic error detection method that is integrated with our semantic communication framework in the spirit of hybrid automatic repeated request (HARQ)
arXiv Detail & Related papers (2024-08-29T08:53:26Z) - Multi-level Reliability Interface for Semantic Communications over Wireless Networks [5.9056146376982]
Joint source-channel coding (JSCC) maps source messages directly into channel input symbols.
We propose designing the source and channel mappings separately and sequentially via a novel multi-level reliability interface.
This work represents an important step towards realizing semantic communications in wireless networks.
arXiv Detail & Related papers (2024-07-07T20:15:10Z) - Latent Diffusion Model-Enabled Real-Time Semantic Communication Considering Semantic Ambiguities and Channel Noises [18.539501941328393]
This paper constructs a latent diffusion model-enabled SemCom system, and proposes three improvements compared to existing works.
A lightweight single-layer latent space transformation adapter completes one-shot learning at the transmitter.
An end-to-end consistency distillation strategy is used to distill the diffusion models trained in latent space.
arXiv Detail & Related papers (2024-06-09T23:39:31Z) - Agent-driven Generative Semantic Communication with Cross-Modality and Prediction [57.335922373309074]
We propose a novel agent-driven generative semantic communication framework based on reinforcement learning.
In this work, we develop an agent-assisted semantic encoder with cross-modality capability, which can track the semantic changes, channel condition, to perform adaptive semantic extraction and sampling.
The effectiveness of the designed models has been verified using the UA-DETRAC dataset, demonstrating the performance gains of the overall A-GSC framework.
arXiv Detail & Related papers (2024-04-10T13:24:27Z) - Benchmarking Semantic Communications for Image Transmission Over MIMO Interference Channels [11.108614988357008]
We propose an interference-robust semantic communication (IRSC) scheme for general multiple-input multiple-output (MIMO) interference channels.
This scheme involves the development of transceivers based on neural networks (NNs), which integrate channel state information (CSI) either solely at the receiver or at both transmitter and receiver ends.
Experimental results demonstrate that the proposed IRSC scheme effectively learns to mitigate interference and outperforms baseline approaches.
arXiv Detail & Related papers (2024-04-10T11:40:22Z) - Joint Sensing and Task-Oriented Communications with Image and Wireless
Data Modalities for Dynamic Spectrum Access [49.83882366499547]
This paper introduces a deep learning approach to dynamic spectrum access, leveraging the synergy of multi-modal image and spectrum data for the identification of potential transmitters.
We consider an edge device equipped with a camera that is taking images of potential objects such as vehicles that may harbor transmitters.
We propose a collaborative system wherein the edge device communicates selectively processed information to a trusted receiver acting as a fusion center.
arXiv Detail & Related papers (2023-12-21T15:26:26Z) - Causal Semantic Communication for Digital Twins: A Generalizable
Imitation Learning Approach [74.25870052841226]
A digital twin (DT) leverages a virtual representation of the physical world, along with communication (e.g., 6G), computing, and artificial intelligence (AI) technologies to enable many connected intelligence services.
Wireless systems can exploit the paradigm of semantic communication (SC) for facilitating informed decision-making under strict communication constraints.
A novel framework called causal semantic communication (CSC) is proposed for DT-based wireless systems.
arXiv Detail & Related papers (2023-04-25T00:15:00Z) - Age of Information in Deep Learning-Driven Task-Oriented Communications [78.84264189471936]
This paper studies the notion of age in task-oriented communications that aims to execute a task at a receiver utilizing the data at its transmitter.
The transmitter-receiver operations are modeled as an encoder-decoder pair of deep neural networks (DNNs) that are jointly trained.
arXiv Detail & Related papers (2023-01-11T04:15:51Z) - Model-based Deep Learning Receiver Design for Rate-Splitting Multiple
Access [65.21117658030235]
This work proposes a novel design for a practical RSMA receiver based on model-based deep learning (MBDL) methods.
The MBDL receiver is evaluated in terms of uncoded Symbol Error Rate (SER), throughput performance through Link-Level Simulations (LLS) and average training overhead.
Results reveal that the MBDL outperforms by a significant margin the SIC receiver with imperfect CSIR.
arXiv Detail & Related papers (2022-05-02T12:23:55Z) - Learning Task-Oriented Communication for Edge Inference: An Information
Bottleneck Approach [3.983055670167878]
A low-end edge device transmits the extracted feature vector of a local data sample to a powerful edge server for processing.
It is critical to encode the data into an informative and compact representation for low-latency inference given the limited bandwidth.
We propose a learning-based communication scheme that jointly optimize feature extraction, source coding, and channel coding.
arXiv Detail & Related papers (2021-02-08T12:53:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.