wildNeRF: Complete view synthesis of in-the-wild dynamic scenes captured
using sparse monocular data
- URL: http://arxiv.org/abs/2209.10399v1
- Date: Tue, 20 Sep 2022 14:37:56 GMT
- Title: wildNeRF: Complete view synthesis of in-the-wild dynamic scenes captured
using sparse monocular data
- Authors: Shuja Khalid, Frank Rudzicz
- Abstract summary: We present a novel neural radiance model that is trainable in a self-supervised manner for novel-view synthesis of dynamic unstructured scenes.
Our end-to-end trainable algorithm learns highly complex, real-world static scenes within seconds and dynamic scenes with both rigid and non-rigid motion within minutes.
- Score: 16.7345472998388
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a novel neural radiance model that is trainable in a
self-supervised manner for novel-view synthesis of dynamic unstructured scenes.
Our end-to-end trainable algorithm learns highly complex, real-world static
scenes within seconds and dynamic scenes with both rigid and non-rigid motion
within minutes. By differentiating between static and motion-centric pixels, we
create high-quality representations from a sparse set of images. We perform
extensive qualitative and quantitative evaluation on existing benchmarks and
set the state-of-the-art on performance measures on the challenging NVIDIA
Dynamic Scenes Dataset. Additionally, we evaluate our model performance on
challenging real-world datasets such as Cholec80 and SurgicalActions160.
Related papers
- D-NPC: Dynamic Neural Point Clouds for Non-Rigid View Synthesis from Monocular Video [53.83936023443193]
This paper contributes to the field by introducing a new synthesis method for dynamic novel view from monocular video, such as smartphone captures.
Our approach represents the as a $textitdynamic neural point cloud$, an implicit time-conditioned point cloud that encodes local geometry and appearance in separate hash-encoded neural feature grids.
arXiv Detail & Related papers (2024-06-14T14:35:44Z) - Gear-NeRF: Free-Viewpoint Rendering and Tracking with Motion-aware Spatio-Temporal Sampling [70.34875558830241]
We present a way for learning a-temporal (4D) embedding, based on semantic semantic gears to allow for stratified modeling of dynamic regions of rendering the scene.
At the same time, almost for free, our tracking approach enables free-viewpoint of interest - a functionality not yet achieved by existing NeRF-based methods.
arXiv Detail & Related papers (2024-06-06T03:37:39Z) - Multi-Level Neural Scene Graphs for Dynamic Urban Environments [64.26401304233843]
We present a novel, decomposable radiance field approach for dynamic urban environments.
We propose a multi-level neural scene graph representation that scales to thousands of images from dozens of sequences with hundreds of fast-moving objects.
arXiv Detail & Related papers (2024-03-29T21:52:01Z) - DyBluRF: Dynamic Neural Radiance Fields from Blurry Monocular Video [18.424138608823267]
We propose DyBluRF, a dynamic radiance field approach that synthesizes sharp novel views from a monocular video affected by motion blur.
To account for motion blur in input images, we simultaneously capture the camera trajectory and object Discrete Cosine Transform (DCT) trajectories within the scene.
arXiv Detail & Related papers (2024-03-15T08:48:37Z) - CTNeRF: Cross-Time Transformer for Dynamic Neural Radiance Field from Monocular Video [25.551944406980297]
We propose a novel approach to generate high-quality novel views from monocular videos of complex and dynamic scenes.
We introduce a module that operates in both the time and frequency domains to aggregate the features of object motion.
Our experiments demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets.
arXiv Detail & Related papers (2024-01-10T00:40:05Z) - DynMF: Neural Motion Factorization for Real-time Dynamic View Synthesis
with 3D Gaussian Splatting [35.69069478773709]
We argue that the per-point motions of a dynamic scene can be decomposed into a small set of explicit or learned trajectories.
Our representation is interpretable, efficient, and expressive enough to offer real-time view synthesis of complex dynamic scene motions.
arXiv Detail & Related papers (2023-11-30T18:59:11Z) - DynIBaR: Neural Dynamic Image-Based Rendering [79.44655794967741]
We address the problem of synthesizing novel views from a monocular video depicting a complex dynamic scene.
We adopt a volumetric image-based rendering framework that synthesizes new viewpoints by aggregating features from nearby views.
We demonstrate significant improvements over state-of-the-art methods on dynamic scene datasets.
arXiv Detail & Related papers (2022-11-20T20:57:02Z) - Non-Rigid Neural Radiance Fields: Reconstruction and Novel View
Synthesis of a Dynamic Scene From Monocular Video [76.19076002661157]
Non-Rigid Neural Radiance Fields (NR-NeRF) is a reconstruction and novel view synthesis approach for general non-rigid dynamic scenes.
We show that even a single consumer-grade camera is sufficient to synthesize sophisticated renderings of a dynamic scene from novel virtual camera views.
arXiv Detail & Related papers (2020-12-22T18:46:12Z) - Neural Scene Flow Fields for Space-Time View Synthesis of Dynamic Scenes [70.76742458931935]
We introduce a new representation that models the dynamic scene as a time-variant continuous function of appearance, geometry, and 3D scene motion.
Our representation is optimized through a neural network to fit the observed input views.
We show that our representation can be used for complex dynamic scenes, including thin structures, view-dependent effects, and natural degrees of motion.
arXiv Detail & Related papers (2020-11-26T01:23:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.