An Image Processing approach to identify solar plages observed at 393.37
nm by the Kodaikanal Solar Observatory
- URL: http://arxiv.org/abs/2209.10631v4
- Date: Fri, 30 Jun 2023 14:28:16 GMT
- Title: An Image Processing approach to identify solar plages observed at 393.37
nm by the Kodaikanal Solar Observatory
- Authors: Sarvesh Gharat, Bhaskar Bose, Abhimanyu Borthakur and Rakesh Mazumder
- Abstract summary: We propose an automated algorithm for identifying solar plages in Ca K wavelength solar data obtained from the Kodaikanal Solar Observatory.
The algorithm successfully annotates all visually identifiable plages in an image and outputs the corresponding calculated plage index.
Our proposed algorithm provides an efficient and reliable method for identifying solar plages, which can aid the study of solar activity.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Solar plages, which are bright regions on the Sun's surface, are an important
indicator of solar activity. In this study, we propose an automated algorithm
for identifying solar plages in Ca K wavelength solar data obtained from the
Kodaikanal Solar Observatory. The algorithm successfully annotates all visually
identifiable plages in an image and outputs the corresponding calculated plage
index. We perform a time series analysis of the plage index (rolling mean)
across multiple solar cycles to test the algorithm's reliability and
robustness. The results show a strong correlation between the calculated plage
index and those reported in a previous study. The correlation coefficients
obtained for all the solar cycles are higher than 0.90, indicating the
reliability of the model. We also suggest that adjusting the hyperparameters
appropriately for a specific image using our web-based app can increase the
model's efficiency. The algorithm has been deployed on the Streamlit Community
Cloud platform, where users can upload images and customize the hyperparameters
for desired results. The input data used in this study is freely available from
the KSO data archive, and the code and the generated data are publicly
available on our GitHub repository. Our proposed algorithm provides an
efficient and reliable method for identifying solar plages, which can aid the
study of solar activity and its impact on the Earth's climate, technology, and
space weather.
Related papers
- Image-Guided Outdoor LiDAR Perception Quality Assessment for Autonomous Driving [107.68311433435422]
We introduce a novel image-guided point cloud quality assessment algorithm for outdoor autonomous driving environments.
The IGO-PQA generation algorithm generates an overall quality score for a singleframe LiDAR-based point cloud.
The second component is a transformer-based IGO-PQA regression algorithm for no-reference outdoor point cloud quality assessment.
arXiv Detail & Related papers (2024-06-25T04:16:14Z) - FLOGA: A machine learning ready dataset, a benchmark and a novel deep
learning model for burnt area mapping with Sentinel-2 [41.28284355136163]
Wildfires pose significant threats to human and animal lives, ecosystems, and socio-economic stability.
In this work, we create and introduce a machine-learning ready dataset we name FLOGA (Forest wiLdfire Observations for the Greek Area)
This dataset is unique as it comprises of satellite imagery acquired before and after a wildfire event.
We use FLOGA to provide a thorough comparison of multiple Machine Learning and Deep Learning algorithms for the automatic extraction of burnt areas.
arXiv Detail & Related papers (2023-11-06T18:42:05Z) - Improving day-ahead Solar Irradiance Time Series Forecasting by
Leveraging Spatio-Temporal Context [46.72071291175356]
Solar power harbors immense potential in mitigating climate change by substantially reducing CO$_2$ emissions.
However, the inherent variability of solar irradiance poses a significant challenge for seamlessly integrating solar power into the electrical grid.
In this paper, we put forth a deep learning architecture designed to harnesstemporal context using satellite data.
arXiv Detail & Related papers (2023-06-01T19:54:39Z) - A Comparative Study on Generative Models for High Resolution Solar
Observation Imaging [59.372588316558826]
This work investigates capabilities of current state-of-the-art generative models to accurately capture the data distribution behind observed solar activity states.
Using distributed training on supercomputers, we are able to train generative models for up to 1024x1024 resolution that produce high quality samples indistinguishable to human experts.
arXiv Detail & Related papers (2023-04-14T14:40:32Z) - Data-driven soiling detection in PV modules [58.6906336996604]
We study the problem of estimating the soiling ratio in photo-voltaic (PV) modules.
A key advantage of our algorithms is that they estimate soiling, without needing to train on labelled data.
Our experimental evaluation shows that we significantly outperform current state-of-the-art methods for estimating soiling ratio.
arXiv Detail & Related papers (2023-01-30T14:35:47Z) - Computational Solar Energy -- Ensemble Learning Methods for Prediction
of Solar Power Generation based on Meteorological Parameters in Eastern India [0.0]
It is important to estimate the amount of solar photovoltaic (PV) power generation for a specific geographical location.
In this paper, the impact of weather parameters on solar PV power generation is estimated by several Ensemble ML (EML) models like Bagging, Boosting, Stacking, and Voting.
The results demonstrate greater prediction accuracy of around 96% for Stacking and Voting models.
arXiv Detail & Related papers (2023-01-21T19:16:03Z) - Incorporating Polar Field Data for Improved Solar Flare Prediction [8.035275738176107]
We consider incorporating data associated with the sun's north and south polar field strengths to improve solar flare prediction performance using machine learning models.
Our experimental results indicate the usefulness of the polar field data for solar flare prediction, which can improve Heidke Skill Score (HSS2) by as much as 10.1%.
arXiv Detail & Related papers (2022-12-04T03:06:11Z) - Robust Self-Tuning Data Association for Geo-Referencing Using Lane Markings [44.4879068879732]
This paper presents a complete pipeline for resolving ambiguities during the data association.
Its core is a robust self-tuning data association that adapts the search area depending on the entropy of the measurements.
We evaluate our method on real data from urban and rural scenarios around the city of Karlsruhe in Germany.
arXiv Detail & Related papers (2022-07-28T12:29:39Z) - HyperionSolarNet: Solar Panel Detection from Aerial Images [0.7157957528875099]
We use deep learning methods for automated detection of solar panel locations and their surface area using aerial imagery.
Our work provides an efficient and scalable method for detecting solar panels, achieving an accuracy of 0.96 for classification and an IoU score of 0.82 for segmentation performance.
arXiv Detail & Related papers (2022-01-06T15:43:13Z) - A Temporally Consistent Image-based Sun Tracking Algorithm for Solar
Energy Forecasting Applications [0.0]
This study introduces an image-based Sun tracking algorithm to localise the Sun in the image when it is visible and interpolate its daily trajectory from past observations.
Experimental results show that the proposed method provides robust smooth Sun trajectories with a mean absolute error below 1% of the image size.
arXiv Detail & Related papers (2020-12-02T09:59:45Z) - Short term solar energy prediction by machine learning algorithms [0.47791962198275073]
We report daily prediction of solar energy by exploiting the strength of machine learning techniques.
Forecast models of base line regressors including linear, ridge, lasso, decision tree, random forest and artificial neural networks have been implemented.
It has been observed that improved accuracy is achieved through random forest and ridge regressor for both grid sizes.
arXiv Detail & Related papers (2020-10-25T17:56:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.