Contrastive Learning for Time Series on Dynamic Graphs
- URL: http://arxiv.org/abs/2209.10662v1
- Date: Wed, 21 Sep 2022 21:14:28 GMT
- Title: Contrastive Learning for Time Series on Dynamic Graphs
- Authors: Yitian Zhang, Florence Regol, Antonios Valkanas, Mark Coates
- Abstract summary: We propose a framework called GraphTNC for unsupervised learning of joint representations of the graph and the time-series.
We show that it can prove beneficial for the classification task with real-world datasets.
- Score: 17.46524362769774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There have been several recent efforts towards developing representations for
multivariate time-series in an unsupervised learning framework. Such
representations can prove beneficial in tasks such as activity recognition,
health monitoring, and anomaly detection. In this paper, we consider a setting
where we observe time-series at each node in a dynamic graph. We propose a
framework called GraphTNC for unsupervised learning of joint representations of
the graph and the time-series. Our approach employs a contrastive learning
strategy. Based on an assumption that the time-series and graph evolution
dynamics are piecewise smooth, we identify local windows of time where the
signals exhibit approximate stationarity. We then train an encoding that allows
the distribution of signals within a neighborhood to be distinguished from the
distribution of non-neighboring signals. We first demonstrate the performance
of our proposed framework using synthetic data, and subsequently we show that
it can prove beneficial for the classification task with real-world datasets.
Related papers
- Learning Time-aware Graph Structures for Spatially Correlated Time
Series Forecasting [30.93275270960829]
We propose Time-aware Graph Structure Learning (TagSL), which extracts time-aware correlations among time series.
We also present a Graph Convolution-based Gated Recurrent Unit (GCGRU), that jointly captures spatial and temporal dependencies.
Finally, we introduce a unified framework named Time-aware Graph Convolutional Recurrent Network (TGCRN), combining TagSL, GCGRU in an encoder-decoder architecture for multi-step-temporal forecasting.
arXiv Detail & Related papers (2023-12-27T04:23:43Z) - From random-walks to graph-sprints: a low-latency node embedding
framework on continuous-time dynamic graphs [4.372841335228306]
We propose a framework for continuous-time-dynamic-graphs (CTDGs) that has low latency and is competitive with state-of-the-art, higher latency models.
In our framework, time-aware node embeddings summarizing multi-hop information are computed using only single-hop operations on the incoming edges.
We demonstrate that our graph-sprints features, combined with a machine learning, achieve competitive performance.
arXiv Detail & Related papers (2023-07-17T12:25:52Z) - DyTed: Disentangled Representation Learning for Discrete-time Dynamic
Graph [59.583555454424]
We propose a novel disenTangled representation learning framework for discrete-time Dynamic graphs, namely DyTed.
We specially design a temporal-clips contrastive learning task together with a structure contrastive learning to effectively identify the time-invariant and time-varying representations respectively.
arXiv Detail & Related papers (2022-10-19T14:34:12Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
We show how to model the evolutionary and multi-scale interactions of time series.
In particular, we first provide a hierarchical graph structure cooperated with the dilated convolution to capture the scale-specific correlations.
A unified neural network is provided to integrate the components above to get the final prediction.
arXiv Detail & Related papers (2022-06-28T08:11:12Z) - Similarity-aware Positive Instance Sampling for Graph Contrastive
Pre-training [82.68805025636165]
We propose to select positive graph instances directly from existing graphs in the training set.
Our selection is based on certain domain-specific pair-wise similarity measurements.
Besides, we develop an adaptive node-level pre-training method to dynamically mask nodes to distribute them evenly in the graph.
arXiv Detail & Related papers (2022-06-23T20:12:51Z) - Learning to Reconstruct Missing Data from Spatiotemporal Graphs with
Sparse Observations [11.486068333583216]
This paper tackles the problem of learning effective models to reconstruct missing data points.
We propose a class of attention-based architectures, that given a set of highly sparse observations, learn a representation for points in time and space.
Compared to the state of the art, our model handles sparse data without propagating prediction errors or requiring a bidirectional model to encode forward and backward time dependencies.
arXiv Detail & Related papers (2022-05-26T16:40:48Z) - Temporal Graph Network Embedding with Causal Anonymous Walks
Representations [54.05212871508062]
We propose a novel approach for dynamic network representation learning based on Temporal Graph Network.
For evaluation, we provide a benchmark pipeline for the evaluation of temporal network embeddings.
We show the applicability and superior performance of our model in the real-world downstream graph machine learning task provided by one of the top European banks.
arXiv Detail & Related papers (2021-08-19T15:39:52Z) - Unsupervised Representation Learning for Time Series with Temporal
Neighborhood Coding [8.45908939323268]
We propose a self-supervised framework for learning generalizable representations for non-stationary time series.
Our motivation stems from the medical field, where the ability to model the dynamic nature of time series data is especially valuable.
arXiv Detail & Related papers (2021-06-01T19:53:24Z) - Spatial-spectral Hyperspectral Image Classification via Multiple Random
Anchor Graphs Ensemble Learning [88.60285937702304]
This paper proposes a novel spatial-spectral HSI classification method via multiple random anchor graphs ensemble learning (RAGE)
Firstly, the local binary pattern is adopted to extract the more descriptive features on each selected band, which preserves local structures and subtle changes of a region.
Secondly, the adaptive neighbors assignment is introduced in the construction of anchor graph, to reduce the computational complexity.
arXiv Detail & Related papers (2021-03-25T09:31:41Z) - Time-varying Graph Representation Learning via Higher-Order Skip-Gram
with Negative Sampling [0.456877715768796]
We build upon the fact that the skip-gram embedding approach implicitly performs a matrix factorization.
We show that higher-order skip-gram with negative sampling is able to disentangle the role of nodes and time.
We empirically evaluate our approach using time-resolved face-to-face proximity data, showing that the learned time-varying graph representations outperform state-of-the-art methods.
arXiv Detail & Related papers (2020-06-25T12:04:48Z) - Learned Factor Graphs for Inference from Stationary Time Sequences [107.63351413549992]
We propose a framework that combines model-based algorithms and data-driven ML tools for stationary time sequences.
neural networks are developed to separately learn specific components of a factor graph describing the distribution of the time sequence.
We present an inference algorithm based on learned stationary factor graphs, which learns to implement the sum-product scheme from labeled data.
arXiv Detail & Related papers (2020-06-05T07:06:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.