論文の概要: Challenges in Visual Anomaly Detection for Mobile Robots
- arxiv url: http://arxiv.org/abs/2209.10995v1
- Date: Thu, 22 Sep 2022 13:26:46 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-23 12:58:54.173955
- Title: Challenges in Visual Anomaly Detection for Mobile Robots
- Title(参考訳): 移動ロボットの視覚異常検出における課題
- Authors: Dario Mantegazza, Alessandro Giusti, Luca M. Gambardella, Andrea
Rizzoli and J\'er\^ome Guzzi
- Abstract要約: 視覚に基づく自律移動ロボットの異常検出作業について考察する。
関連した視覚異常の種類を分類し,教師なしの深層学習手法で検出する方法について議論する。
- 参考スコア(独自算出の注目度): 65.53820325712455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We consider the task of detecting anomalies for autonomous mobile robots
based on vision. We categorize relevant types of visual anomalies and discuss
how they can be detected by unsupervised deep learning methods. We propose a
novel dataset built specifically for this task, on which we test a
state-of-the-art approach; we finally discuss deployment in a real scenario.
- Abstract(参考訳): 視覚に基づく自律移動ロボットの異常検出の課題について考察する。
関連する視覚異常を分類し,教師なしの深層学習法でどのように検出できるかを考察する。
我々は、このタスク用に特別に構築された、最先端のアプローチをテストする新しいデータセットを提案し、最終的に実際のシナリオでのデプロイメントについて議論する。
関連論文リスト
- Active Visual Localization for Multi-Agent Collaboration: A Data-Driven Approach [47.373245682678515]
本研究は、視点変化の課題を克服するために、アクティブな視覚的ローカライゼーションをどのように利用できるかを検討する。
具体的には、与えられた場所における最適な視点を選択する問題に焦点をあてる。
その結果,既存の手法と比較して,データ駆動方式の方が優れた性能を示した。
論文 参考訳(メタデータ) (2023-10-04T08:18:30Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
移動ロボットの視覚異常検出システム構築の問題点を考察する。
標準異常検出モデルは、非異常データのみからなる大規模なデータセットを用いて訓練される。
本研究では,これらのデータを利用してリアルNVP異常検出モデルの性能向上を図る。
論文 参考訳(メタデータ) (2022-09-20T15:18:13Z) - Multimodal Detection of Unknown Objects on Roads for Autonomous Driving [4.3310896118860445]
未知の物体を検出する新しいパイプラインを提案する。
我々は,最先端の美術品検出モデルを逐次的に組み合わせることで,ライダーとカメラのデータを利用する。
論文 参考訳(メタデータ) (2022-05-03T10:58:41Z) - The State of Aerial Surveillance: A Survey [62.198765910573556]
本稿では、コンピュータビジョンとパターン認識の観点から、人間中心の空中監視タスクの概要を概観する。
主な対象は、単体または複数の被験者が検出され、特定され、追跡され、再同定され、その振る舞いが分析される人間である。
論文 参考訳(メタデータ) (2022-01-09T20:13:27Z) - Unsupervised Online Learning for Robotic Interestingness with Visual
Memory [9.189959184116962]
そこで本研究では,オンライン環境に自動的に適応して,興味深いシーンを素早く報告する手法を開発した。
地下トンネル環境における最先端の非監視手法よりも平均20%高い精度を実現する。
論文 参考訳(メタデータ) (2021-11-18T16:51:39Z) - Sensing Anomalies as Potential Hazards: Datasets and Benchmarks [43.55994393060723]
本稿では,自律移動ロボットの視覚知覚データストリームにおいて,特異な意味パターンを検出することの問題点について考察する。
ロボット探索のシナリオで得られた3つの新しい画像ベースデータセットをコントリビュートする。
本研究では,異なるスケールで動作するオートエンコーダに基づく異常検出手法の性能について検討する。
論文 参考訳(メタデータ) (2021-10-27T18:47:06Z) - Rapid Exploration for Open-World Navigation with Latent Goal Models [78.45339342966196]
多様なオープンワールド環境における自律的な探索とナビゲーションのためのロボット学習システムについて述べる。
本手法のコアとなるのは、画像の非パラメトリックトポロジカルメモリとともに、距離と行動の学習された潜在変数モデルである。
学習方針を規則化するために情報ボトルネックを使用し、(i)目標のコンパクトな視覚的表現、(ii)一般化能力の向上、(iii)探索のための実行可能な目標をサンプリングするためのメカニズムを提供する。
論文 参考訳(メタデータ) (2021-04-12T23:14:41Z) - ViNG: Learning Open-World Navigation with Visual Goals [82.84193221280216]
視覚的目標達成のための学習に基づくナビゲーションシステムを提案する。
提案手法は,我々がvingと呼ぶシステムが,目標条件強化学習のための提案手法を上回っていることを示す。
我々は、ラストマイル配送や倉庫検査など、現実の多くのアプリケーションでViNGを実演する。
論文 参考訳(メタデータ) (2020-12-17T18:22:32Z) - One-Shot Informed Robotic Visual Search in the Wild [29.604267552742026]
本研究では,環境モニタリングのための映像データ収集を目的とした水中ロボットナビゲーションの課題について考察する。
現在、フィールドロボットの大多数は、未構造化の自然環境における監視タスクを実行しており、経路追跡を通じて、指定された経路ポイントのシーケンスをナビゲートしている。
そこで本研究では,ロボットの視覚的探索を視覚的類似度演算子を用いて視覚的ナビゲーションを実現する手法を提案する。
論文 参考訳(メタデータ) (2020-03-22T22:14:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。