Efficient Online Quantum Circuit Learning with No Upfront Training
- URL: http://arxiv.org/abs/2501.04636v1
- Date: Wed, 08 Jan 2025 17:30:45 GMT
- Title: Efficient Online Quantum Circuit Learning with No Upfront Training
- Authors: Tom O'Leary, Piotr Czarnik, Elijah Pelofske, Andrew T. Sornborger, Michael McKerns, Lukasz Cincio,
- Abstract summary: We propose a surrogate-based method for optimizing parameterized quantum circuits with few calls to a quantum computer.
For 16-qubit random 3-regular Max-Cut problems solved using the QAOA ansatz, we find that our method outperforms the prior state of the art.
- Score: 1.0159681653887238
- License:
- Abstract: We propose a surrogate-based method for optimizing parameterized quantum circuits which is designed to operate with few calls to a quantum computer. We employ a computationally inexpensive classical surrogate to approximate the cost function of a variational quantum algorithm. An initial surrogate is fit to data obtained by sparse sampling of the true cost function using noisy quantum computers. The surrogate is iteratively refined by querying the true cost at the surrogate optima, then using radial basis function interpolation with existing and new true cost data. The use of radial basis function interpolation enables surrogate construction without hyperparameters to pre-train. Additionally, using the surrogate as an acquisition function focuses hardware queries in the vicinity of the true optima. For 16-qubit random 3-regular Max-Cut problems solved using the QAOA ansatz, we find that our method outperforms the prior state of the art. Furthermore, we demonstrate successful optimization of QAOA circuits for 127-qubit random Ising models on an IBM quantum processor using measurement counts of the order of $10^4-10^5$. The strong empirical performance of this approach is an important step towards the large-scale practical application of variational quantum algorithms and a clear demonstration of the effectiveness of classical-surrogate-based learning approaches.
Related papers
- Symmetry-preserved cost functions for variational quantum eigensolver [0.0]
Hybrid quantum-classical variational algorithms are considered ideal for noisy quantum computers.
We propose encoding symmetry preservation directly into the cost function, enabling more efficient use of Hardware-Efficient Ans"atze.
arXiv Detail & Related papers (2024-11-25T20:33:47Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Surrogate optimization of variational quantum circuits [1.0546736060336612]
Variational quantum eigensolvers are touted as a near-term algorithm capable of impacting many applications.
Finding algorithms and methods to improve convergence is important to accelerate the capabilities of near-term hardware for VQE.
arXiv Detail & Related papers (2024-04-03T18:00:00Z) - Measurement-Based Quantum Approximate Optimization [0.24861619769660645]
We focus on measurement-based quantum computing protocols for approximate optimization.
We derive measurement patterns for applying QAOA to the broad and important class of QUBO problems.
We discuss the resource requirements and tradeoffs of our approach to that of more traditional quantum circuits.
arXiv Detail & Related papers (2024-03-18T06:59:23Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Quantum Architecture Search for Quantum Monte Carlo Integration via
Conditional Parameterized Circuits with Application to Finance [0.0]
Classical Monte Carlo algorithms can theoretically be sped up on a quantum computer by employing amplitude estimation (AE)
We develop a straightforward approach based on pretraining parameterized quantum circuits.
We show how they can be transformed into their conditional variant, making them usable as a subroutine in an AE algorithm.
arXiv Detail & Related papers (2023-04-18T07:56:57Z) - Automatic and effective discovery of quantum kernels [41.61572387137452]
Quantum computing can empower machine learning models by enabling kernel machines to leverage quantum kernels for representing similarity measures between data.
We present an approach to this problem, which employs optimization techniques, similar to those used in neural architecture search and AutoML.
The results obtained by testing our approach on a high-energy physics problem demonstrate that, in the best-case scenario, we can either match or improve testing accuracy with respect to the manual design approach.
arXiv Detail & Related papers (2022-09-22T16:42:14Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisy hybrid quantum-classical algorithms are powerful tools to maximize the use of Noisy Intermediate Scale Quantum devices.
We propose a strategy for such ansatze used in variational quantum algorithms, which we call "Efficient Circuit Training" (PECT)
Instead of optimizing all of the ansatz parameters at once, PECT launches a sequence of variational algorithms.
arXiv Detail & Related papers (2020-10-01T18:14:11Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
We study two different methods to prepare excited states on a quantum computer.
We benchmark these techniques on emulated and real quantum devices.
These findings show that quantum techniques designed to achieve good scaling on fault tolerant devices might also provide practical benefits on devices with limited connectivity and gate fidelity.
arXiv Detail & Related papers (2020-09-28T17:21:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.