Bosonic Qiskit
- URL: http://arxiv.org/abs/2209.11153v2
- Date: Fri, 2 Dec 2022 18:23:03 GMT
- Title: Bosonic Qiskit
- Authors: Timothy J Stavenger, Eleanor Crane, Kevin Smith, Christopher T Kang,
Steven M Girvin, Nathan Wiebe
- Abstract summary: We introduce the Bosonic Qiskit software to enable the simulation of hybrid qubit/bosonic systems.
This implementation can be used for simulating new hybrid systems, verifying proposed physical systems, and modeling systems larger than can currently be constructed.
- Score: 1.0295442937414798
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The practical benefits of hybrid quantum information processing hardware that
contains continuous-variable objects (bosonic modes such as mechanical or
electromagnetic oscillators) in addition to traditional (discrete-variable)
qubits have recently been demonstrated by experiments with bosonic codes that
reach the break-even point for quantum error correction and by efficient
Gaussian boson sampling simulation of the Franck-Condon spectra of triatomic
molecules that is well beyond the capabilities of current qubit-only hardware.
The goal of this Co-design Center for Quantum Advantage (C2QA) project is to
develop an instruction set architecture (ISA) for hybrid qubit/bosonic mode
systems that contains an inventory of the fundamental operations and
measurements that are possible in such hardware. The corresponding abstract
machine model (AMM) would also contain a description of the appropriate error
models associated with the gates, measurements and time evolution of the
hardware. This information has been implemented as an extension of Qiskit.
Qiskit is an opensource software development toolkit (SDK) for simulating the
quantum state of a quantum circuit on a system with Python 3.7+ and for running
the same circuits on prototype hardware within the IBM Quantum Lab. We
introduce the Bosonic Qiskit software to enable the simulation of hybrid
qubit/bosonic systems using the existing Qiskit software development kit. This
implementation can be used for simulating new hybrid systems, verifying
proposed physical systems, and modeling systems larger than can currently be
constructed. We also cover tutorials and example use cases included within the
software to study Jaynes- Cummings models, bosonic Hubbard models, plotting
Wigner functions and animations, and calculating maximum likelihood estimations
using Wigner functions.
Related papers
- MQT Qudits: A Software Framework for Mixed-Dimensional Quantum Computing [4.306566710489809]
We introduce MQT Qudits, an open-source tool to assist in designing and implementing applications for mixed-dimensional qudit devices.
We specify a standardized language for mixed-dimension systems and discuss circuit specification, compilation to hardware gate sets, efficient circuit simulation, and open challenges.
arXiv Detail & Related papers (2024-10-03T18:00:01Z) - An open-source framework for quantum hardware control [31.874825130479174]
The development of quantum computers needs reliable quantum hardware and tailored software for controlling electronics specific to various quantum platforms.
This paper presents updates to Qibolab, a software library that leverages Qibo capabilities to execute quantum algorithms on self hosted quantum hardware platforms.
arXiv Detail & Related papers (2024-07-31T16:44:31Z) - QuantumAnnealing: A Julia Package for Simulating Dynamics of Transverse Field Ising Models [4.574830585715128]
QuantumAnnealing.jl provides a toolkit for performing simulations of Analog Quantum Computers on classical hardware.
This package includes functionality for simulation of the time evolution of the Transverse Field Ising Model.
It allows for rapid prototyping of models expected to display interesting behavior, verification of the performance of quantum devices, and easy comparison against the expected behavior of quantum devices against classical approaches for small systems.
arXiv Detail & Related papers (2024-04-22T18:03:19Z) - QSAN: A Near-term Achievable Quantum Self-Attention Network [73.15524926159702]
Self-Attention Mechanism (SAM) is good at capturing the internal connections of features.
A novel Quantum Self-Attention Network (QSAN) is proposed for image classification tasks on near-term quantum devices.
arXiv Detail & Related papers (2022-07-14T12:22:51Z) - Open Source Variational Quantum Eigensolver Extension of the Quantum
Learning Machine (QLM) for Quantum Chemistry [0.0]
We introduce a novel open-source QC package, denoted Open-VQE, providing tools for using and developing chemically-inspired adaptive methods.
It is able to use the Atos Quantum Learning Machine (QLM), a general programming framework enabling to write, optimize simulate computing programs.
Along with OpenVQE, we introduce myQLMFermion, a new open-source module (that includes the key QLM ressources that are important for QC developments)
arXiv Detail & Related papers (2022-06-17T14:24:22Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - QuaSiMo: A Composable Library to Program Hybrid Workflows for Quantum
Simulation [48.341084094844746]
We present a composable design scheme for the development of hybrid quantum/classical algorithms and for applications of quantum simulation.
We implement our design scheme using the hardware-agnostic programming language QCOR into the QuaSiMo library.
arXiv Detail & Related papers (2021-05-17T16:17:57Z) - Tensor Network Quantum Virtual Machine for Simulating Quantum Circuits
at Exascale [57.84751206630535]
We present a modernized version of the Quantum Virtual Machine (TNQVM) which serves as a quantum circuit simulation backend in the e-scale ACCelerator (XACC) framework.
The new version is based on the general purpose, scalable network processing library, ExaTN, and provides multiple quantum circuit simulators.
By combining the portable XACC quantum processors and the scalable ExaTN backend we introduce an end-to-end virtual development environment which can scale from laptops to future exascale platforms.
arXiv Detail & Related papers (2021-04-21T13:26:42Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Composable Programming of Hybrid Workflows for Quantum Simulation [48.341084094844746]
We present a composable design scheme for the development of hybrid quantum/classical algorithms and for applications of quantum simulation.
We implement our design scheme using the hardware-agnostic programming language QCOR into the QuaSiMo library.
arXiv Detail & Related papers (2021-01-20T14:20:14Z) - Quingo: A Programming Framework for Heterogeneous Quantum-Classical
Computing with NISQ Features [0.0]
We propose the Quingo framework to integrate and manage quantum-classical software and hardware to provide the programmability over HQCC applications.
We also propose the Quingo programming language, an external domain-specific language highlighting timer-based timing control and opaque operation definition.
arXiv Detail & Related papers (2020-09-02T06:42:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.