Near-Term Fermionic Simulation with Subspace Noise Tailored Quantum Error Mitigation
- URL: http://arxiv.org/abs/2503.11785v1
- Date: Fri, 14 Mar 2025 18:20:54 GMT
- Title: Near-Term Fermionic Simulation with Subspace Noise Tailored Quantum Error Mitigation
- Authors: Miha Papič, Manuel G. Algaba, Emiliano Godinez-Ramirez, Inés de Vega, Adrian Auer, Fedor Šimkovic IV, Alessio Calzona,
- Abstract summary: We introduce the Subspace Noise Tailoring (SNT) algorithm, which efficiently combines Symmetry Verification (SV) and low bias of Probabilistic Error Cancellation (PEC) QEM techniques.<n>We study the performance of our method by simulating the Trotterized time evolution of the spin-1/2 Fermi-Hubbard model (FHM) using a variety of local fermion-to-qubit encodings.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum error mitigation (QEM) has emerged as a powerful tool for the extraction of useful quantum information from quantum devices. Here, we introduce the Subspace Noise Tailoring (SNT) algorithm, which efficiently combines the cheap cost of Symmetry Verification (SV) and low bias of Probabilistic Error Cancellation (PEC) QEM techniques. We study the performance of our method by simulating the Trotterized time evolution of the spin-1/2 Fermi-Hubbard model (FHM) using a variety of local fermion-to-qubit encodings, which define a computational subspace through a set of stabilizers, the measurement of which can be used to post-select noisy quantum data. We study different combinations of QEM and encodings and uncover a rich phase diagram of optimal combinations, depending on the hardware performance, system size and available shot budget. We then demonstrate how SNT extends the reach of current noisy quantum computers in terms of the number of fermionic lattice sites and the number of Trotter steps, and quantify the required hardware performance beyond which a noisy device may outperform classical computational methods.
Related papers
- Bayesian Quantum Amplitude Estimation [49.1574468325115]
We introduce BAE, a noise-aware Bayesian algorithm for quantum amplitude estimation.<n>We show that BAE achieves Heisenberg-limited estimation and benchmark it against other approaches.
arXiv Detail & Related papers (2024-12-05T18:09:41Z) - Machine Learning Methods as Robust Quantum Noise Estimators [0.0]
We show how traditional machine learning models can estimate quantum noise by analyzing circuit composition.
Our results illustrate how this approach can accurately predict the robustness of circuits with a low error rate.
These techniques can be used to assess the quality and security of quantum code, leading to more reliable quantum products.
arXiv Detail & Related papers (2024-09-23T09:00:12Z) - Optimized noise-assisted simulation of the Lindblad equation with
time-dependent coefficients on a noisy quantum processor [0.6990493129893112]
Noise can be an asset in digital quantum simulations of open systems on Noisy Intermediate-Scale Quantum (NISQ) devices.
We introduce an optimized decoherence rate control scheme that can significantly reduce computational requirements by multiple orders of magnitude.
arXiv Detail & Related papers (2024-02-12T12:48:03Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
A new Quantum Error Mitigation (QEM) technique uses Fuzzy C-Means clustering to specifically identify measurement error patterns.
We report a proof-of-principle validation of the technique on a 2-qubit register, obtained as a subset of a real NISQ 5-qubit superconducting quantum processor.
We demonstrate that the FCM-based QEM technique allows for reasonable improvement of the expectation values of single- and two-qubit gates based quantum circuits.
arXiv Detail & Related papers (2024-02-02T14:02:45Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Simulation of Dissipative Energy Transfer via Noisy Quantum
Computer [0.40964539027092917]
We propose a practical approach to simulate the dynamics of an open quantum system on a noisy computer.
Our method leverages gate noises on the IBM-Q real device, enabling us to perform calculations using only two qubits.
In the last, to deal with the increasing depth of quantum circuits when doing Trotter expansion, we introduced the transfer tensor method(TTM) to extend our short-term dynamics simulation.
arXiv Detail & Related papers (2023-12-03T13:56:41Z) - Real-time error mitigation for variational optimization on quantum
hardware [45.935798913942904]
We define a Real Time Quantum Error Mitigation (RTQEM) algorithm to assist in fitting functions on quantum chips with VQCs.
Our RTQEM routine can enhance VQCs' trainability by reducing the corruption of the loss function.
arXiv Detail & Related papers (2023-11-09T19:00:01Z) - Probabilistic Sampling of Balanced K-Means using Adiabatic Quantum Computing [93.83016310295804]
AQCs allow to implement problems of research interest, which has sparked the development of quantum representations for computer vision tasks.
In this work, we explore the potential of using this information for probabilistic balanced k-means clustering.
Instead of discarding non-optimal solutions, we propose to use them to compute calibrated posterior probabilities with little additional compute cost.
This allows us to identify ambiguous solutions and data points, which we demonstrate on a D-Wave AQC on synthetic tasks and real visual data.
arXiv Detail & Related papers (2023-10-18T17:59:45Z) - Multi-sequence alignment using the Quantum Approximate Optimization
Algorithm [0.0]
We present a Hamiltonian formulation and implementation of the Multiple Sequence Alignment problem with the variational Quantum Approximate Optimization Algorithm (QAOA)
We consider a small instance of our QAOA-MSA algorithm in both a quantum simulator and its performance on an actual quantum computer.
While the ideal solution to the instance of MSA investigated is shown to be the most probable state sampled for a shallow p5 quantum circuit, the level of noise in current devices is still a formidable challenge.
arXiv Detail & Related papers (2023-08-23T12:46:24Z) - Adaptive quantum error mitigation using pulse-based inverse evolutions [0.0]
We introduce a QEM method termed Adaptive KIK' that adapts to the noise level of the target device.
The implementation of the method is experimentally simple -- it does not involve any tomographic information or machine-learning stage.
We demonstrate our findings in the IBM quantum computers and through numerical simulations.
arXiv Detail & Related papers (2023-03-09T02:50:53Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Pulse-level noisy quantum circuits with QuTiP [53.356579534933765]
We introduce new tools in qutip-qip, QuTiP's quantum information processing package.
These tools simulate quantum circuits at the pulse level, leveraging QuTiP's quantum dynamics solvers and control optimization features.
We show how quantum circuits can be compiled on simulated processors, with control pulses acting on a target Hamiltonian.
arXiv Detail & Related papers (2021-05-20T17:06:52Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.