EEG-Based Inter-Patient Epileptic Seizure Detection Combining Domain Adversarial Training with CNN-BiLSTM Network
- URL: http://arxiv.org/abs/2505.15203v1
- Date: Wed, 21 May 2025 07:27:55 GMT
- Title: EEG-Based Inter-Patient Epileptic Seizure Detection Combining Domain Adversarial Training with CNN-BiLSTM Network
- Authors: Rina Tazaki, Tomoyuki Akiyama, Akira Furui,
- Abstract summary: We propose a detection framework combining domain adversarial training with a convolutional neural network (CNN) and a bidirectional long short-term memory (BiLSTM)<n> evaluation using EEG recordings from 20 patients with focal epilepsy demonstrated superior performance over non-adversarial methods.<n>The integration of adversarial training with temporal modeling enables robust cross-patient seizure detection.
- Score: 1.9662978733004604
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated epileptic seizure detection from electroencephalogram (EEG) remains challenging due to significant individual differences in EEG patterns across patients. While existing studies achieve high accuracy with patient-specific approaches, they face difficulties in generalizing to new patients. To address this, we propose a detection framework combining domain adversarial training with a convolutional neural network (CNN) and a bidirectional long short-term memory (BiLSTM). First, the CNN extracts local patient-invariant features through domain adversarial training, which optimizes seizure detection accuracy while minimizing patient-specific characteristics. Then, the BiLSTM captures temporal dependencies in the extracted features to model seizure evolution patterns. Evaluation using EEG recordings from 20 patients with focal epilepsy demonstrated superior performance over non-adversarial methods, achieving high detection accuracy across different patients. The integration of adversarial training with temporal modeling enables robust cross-patient seizure detection.
Related papers
- The use of Multi-domain Electroencephalogram Representations in the building of Models based on Convolutional and Recurrent Neural Networks for Epilepsy Detection [1.4785447770765987]
Epilepsy affects approximately 50 million people globally and remains challenging to treat.<n>EEG data is prone to variability between experts, emphasizing the need for automated solutions.<n>This work systematically compares deep neural networks trained on EEG data in time, frequency, and time-frequency domains.<n>Results demonstrate that frequency-domain data achieves detection metrics exceeding 97%, providing a robust foundation for more accurate and reliable seizure detection systems.
arXiv Detail & Related papers (2025-04-24T19:50:48Z) - STIED: A deep learning model for the SpatioTemporal detection of focal Interictal Epileptiform Discharges with MEG [0.08030359871216612]
Magnetoencephalography (MEG) allows the non-invasive detection of interictal epileptiform discharges (IEDs)
Deep learning (DL) could revolutionize clinical MEG practice.
We developed STIED, a powerful yet supervised DL algorithm combining two convolutional neural networks with temporal (1D time-course) and spatial (2D topography) features of MEG signals.
arXiv Detail & Related papers (2024-10-30T18:41:22Z) - REST: Efficient and Accelerated EEG Seizure Analysis through Residual State Updates [54.96885726053036]
This paper introduces a novel graph-based residual state update mechanism (REST) for real-time EEG signal analysis.
By leveraging a combination of graph neural networks and recurrent structures, REST efficiently captures both non-Euclidean geometry and temporal dependencies within EEG data.
Our model demonstrates high accuracy in both seizure detection and classification tasks.
arXiv Detail & Related papers (2024-06-03T16:30:19Z) - Domain Adaptive Synapse Detection with Weak Point Annotations [63.97144211520869]
We present AdaSyn, a framework for domain adaptive synapse detection with weak point annotations.
In the WASPSYN challenge at I SBI 2023, our method ranks the 1st place.
arXiv Detail & Related papers (2023-08-31T05:05:53Z) - EEG-Based Epileptic Seizure Prediction Using Temporal Multi-Channel
Transformers [1.0970480513577103]
Epilepsy is one of the most common neurological diseases, characterized by transient and unprovoked events called epileptic seizures.
EEG is an auxiliary method used to perform both the diagnosis and the monitoring of epilepsy.
Given the unexpected nature of an epileptic seizure, its prediction would improve patient care, optimizing the quality of life and the treatment of epilepsy.
arXiv Detail & Related papers (2022-09-18T03:03:47Z) - Multiple Time Series Fusion Based on LSTM An Application to CAP A Phase
Classification Using EEG [56.155331323304]
Deep learning based electroencephalogram channels' feature level fusion is carried out in this work.
Channel selection, fusion, and classification procedures were optimized by two optimization algorithms.
arXiv Detail & Related papers (2021-12-18T14:17:49Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - Patient-Specific Seizure Prediction Using Single Seizure
Electroencephalography Recording [16.395309518579914]
We propose a Siamese neural network based seizure prediction method that takes a wavelet transformed EEG tensor as an input with convolutional neural network (CNN) as the base network for detecting change-points in EEG.
Our method only needs one seizure for training which translates to less than ten minutes of preictal and interictal data while still getting comparable results to models which utilize multiple seizures for seizure prediction.
arXiv Detail & Related papers (2020-11-14T03:45:17Z) - Epileptic Seizure Classification with Symmetric and Hybrid Bilinear
Models [20.376912072606412]
This paper proposes a novel hybrid bilinear deep learning network with an application in the clinical procedures of epilepsy classification diagnosis.
The accuracy of the diagnosis is also complicated by overlapping medical symptoms, varying levels of experience and inter-ob variability among clinical professions.
arXiv Detail & Related papers (2020-01-15T03:22:10Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
Comorbid diseases co-occur and progress via complex temporal patterns that vary among individuals.
In electronic health records we can observe the different diseases a patient has, but can only infer the temporal relationship between each co-morbid condition.
We develop deep diffusion processes to model "dynamic comorbidity networks"
arXiv Detail & Related papers (2020-01-08T15:47:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.