Prethermalization and the local robustness of gapped systems
- URL: http://arxiv.org/abs/2209.11242v2
- Date: Tue, 18 Apr 2023 00:23:39 GMT
- Title: Prethermalization and the local robustness of gapped systems
- Authors: Chao Yin, Andrew Lucas
- Abstract summary: We prove that prethermalization is a generic property of gapped local many-body quantum systems.
We infer the robustness of quantum simulation in low-energy subspaces.
- Score: 0.22843885788439797
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We prove that prethermalization is a generic property of gapped local
many-body quantum systems, subjected to small perturbations, in any spatial
dimension. More precisely, let $H_0$ be a Hamiltonian, spatially local in $d$
spatial dimensions, with a gap $\Delta$ in the many-body spectrum; let $V$ be a
spatially local Hamiltonian consisting of a sum of local terms, each of which
is bounded by $\epsilon \ll \Delta$. Then, the approximation that quantum
dynamics is restricted to the low-energy subspace of $H_0$ is accurate, in the
correlation functions of local operators, for stretched exponential time scale
$\tau \sim \exp[(\Delta/\epsilon)^a]$ for any $a<1/(2d-1)$. This result does
not depend on whether the perturbation closes the gap. It significantly extends
previous rigorous results on prethermalization in models where $H_0$ was
frustration-free. We infer the robustness of quantum simulation in low-energy
subspaces, the existence of athermal ``scarred" correlation functions in gapped
systems subject to generic perturbations, the long lifetime of false vacua in
symmetry broken systems, and the robustness of quantum information in
non-frustration-free gapped phases with topological order.
Related papers
- Exactly solvable models for fermionic symmetry-enriched topological phases and fermionic 't Hooft anomaly [33.49184078479579]
The interplay between symmetry and topological properties plays a very important role in modern physics.
How to realize all these fermionic SET (fSET) phases in lattice models remains to be a difficult open problem.
arXiv Detail & Related papers (2024-10-24T19:52:27Z) - Exact dynamics of quantum dissipative $XX$ models: Wannier-Stark localization in the fragmented operator space [49.1574468325115]
We find an exceptional point at a critical dissipation strength that separates oscillating and non-oscillating decay.
We also describe a different type of dissipation that leads to a single decay mode in the whole operator subspace.
arXiv Detail & Related papers (2024-05-27T16:11:39Z) - Chaos and quantization of the three-particle generic
Fermi-Pasta-Ulam-Tsingou model II: phenomenology of quantum eigenstates [5.387047563972287]
We study the phenomenology of quantum eigenstates in the three-particle FPUT model.
We find that in the mixed-type system, the fraction of mixed eigenstates in an energy shell shows a power-law decay with respect to the decreasing Planck constant.
In the general case which is fully chaotic, the maximally localized state is influenced by the stable and unstable manifold of the saddles.
arXiv Detail & Related papers (2024-01-23T19:51:58Z) - From Spectral Theorem to Statistical Independence with Application to
System Identification [11.98319841778396]
We provide first quantitative handle on decay rate of finite powers of state transition matrix $|Ak|$.
It is shown that when a stable dynamical system has only one distinct eigenvalue and discrepancy of $n-1$: $|A|$ has a dependence on $n$, resulting dynamics are inseparable.
We show that element-wise error is essentially a variant of well-know Littlewood-Offord problem.
arXiv Detail & Related papers (2023-10-16T15:40:43Z) - Measuring the Loschmidt amplitude for finite-energy properties of the
Fermi-Hubbard model on an ion-trap quantum computer [27.84599956781646]
We study the operation of a quantum-classical time-series algorithm on a present-day quantum computer.
Specifically, we measure the Loschmidt amplitude for the Fermi-Hubbard model on a $16$-site ladder geometry (32 orbitals) on the Quantinuum H2-1 trapped-ion device.
We numerically analyze the influence of noise on the full operation of the quantum-classical algorithm by measuring expectation values of local observables at finite energies.
arXiv Detail & Related papers (2023-09-19T11:59:36Z) - Gauge Theory Couplings on Anisotropic Lattices [7.483799520082159]
We derive perturbative relations between bare and renormalized quantities in Euclidean spacetime at any anisotropy factor.
We find less than $10%$ discrepancy between our perturbative results and those from existing nonperturbative determinations of the anisotropy.
arXiv Detail & Related papers (2022-08-22T15:56:53Z) - Critical phase boundary and finite-size fluctuations in
Su-Schrieffer-Heeger model with random inter-cell couplings [0.0]
In this work, we investigate a special sort of a disorder when inter-cell hopping amplitudes are random.
Using a definition for $mathbbZ$-topological invariant $nuin 0; 1$ in terms of a non-Hermitian part of the total Hamiltonian, we calculate $langlenurangle averaged by random realizations.
arXiv Detail & Related papers (2021-11-30T15:35:58Z) - Many-Body Quantum Chaos and Space-time Translational Invariance [0.0]
We study the consequences of having translational invariance in space and in time in many-body quantum chaotic systems.
We consider an ensemble of random quantum circuits, composed of single-site random unitaries and nearest neighbour couplings.
We numerically demonstrate, with simulations of two distinct circuit models, that in such a scaling limit, most microscopic details become unimportant.
arXiv Detail & Related papers (2021-09-09T18:00:00Z) - Complete entropic inequalities for quantum Markov chains [17.21921346541951]
We prove that every GNS-symmetric quantum Markov semigroup on a finite dimensional algebra satisfies a modified log-Sobolev inequality.
We also establish the first general approximateization property of relative entropy.
arXiv Detail & Related papers (2021-02-08T11:47:37Z) - Spectral statistics in constrained many-body quantum chaotic systems [0.0]
We study the spectral statistics of spatially-extended many-body quantum systems with on-site Abelian symmetries or local constraints.
In particular, we analytically argue that in a system of length $L$ that conserves the $mth$ multipole moment, $t_mathrmTh$ scales subdiffusively as $L2(m+1)$.
arXiv Detail & Related papers (2020-09-24T17:59:57Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.