Measuring the Loschmidt amplitude for finite-energy properties of the
Fermi-Hubbard model on an ion-trap quantum computer
- URL: http://arxiv.org/abs/2309.10552v2
- Date: Fri, 22 Sep 2023 17:23:32 GMT
- Title: Measuring the Loschmidt amplitude for finite-energy properties of the
Fermi-Hubbard model on an ion-trap quantum computer
- Authors: K\'evin H\'emery, Khaldoon Ghanem, Eleanor Crane, Sara L. Campbell,
Joan M. Dreiling, Caroline Figgatt, Cameron Foltz, John P. Gaebler, Jacob
Johansen, Michael Mills, Steven A. Moses, Juan M. Pino, Anthony Ransford,
Mary Rowe, Peter Siegfried, Russell P. Stutz, Henrik Dreyer, Alexander
Schuckert, Ramil Nigmatullin
- Abstract summary: We study the operation of a quantum-classical time-series algorithm on a present-day quantum computer.
Specifically, we measure the Loschmidt amplitude for the Fermi-Hubbard model on a $16$-site ladder geometry (32 orbitals) on the Quantinuum H2-1 trapped-ion device.
We numerically analyze the influence of noise on the full operation of the quantum-classical algorithm by measuring expectation values of local observables at finite energies.
- Score: 27.84599956781646
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Calculating the equilibrium properties of condensed matter systems is one of
the promising applications of near-term quantum computing. Recently, hybrid
quantum-classical time-series algorithms have been proposed to efficiently
extract these properties from a measurement of the Loschmidt amplitude $\langle
\psi| e^{-i \hat H t}|\psi \rangle$ from initial states $|\psi\rangle$ and a
time evolution under the Hamiltonian $\hat H$ up to short times $t$. In this
work, we study the operation of this algorithm on a present-day quantum
computer. Specifically, we measure the Loschmidt amplitude for the
Fermi-Hubbard model on a $16$-site ladder geometry (32 orbitals) on the
Quantinuum H2-1 trapped-ion device. We assess the effect of noise on the
Loschmidt amplitude and implement algorithm-specific error mitigation
techniques. By using a thus-motivated error model, we numerically analyze the
influence of noise on the full operation of the quantum-classical algorithm by
measuring expectation values of local observables at finite energies. Finally,
we estimate the resources needed for scaling up the algorithm.
Related papers
- Optimizing random local Hamiltonians by dissipation [44.99833362998488]
We prove that a simplified quantum Gibbs sampling algorithm achieves a $Omega(frac1k)$-fraction approximation of the optimum.
Our results suggest that finding low-energy states for sparsified (quasi)local spin and fermionic models is quantumly easy but classically nontrivial.
arXiv Detail & Related papers (2024-11-04T20:21:16Z) - Quantum Resources for Pure Thermal Shadows [0.0]
Calculating the properties of Gibbs states is an important task in Quantum Chemistry and Quantum Machine Learning.
Previous work has proposed a quantum algorithm which predicts Gibbs state expectation values for $M$ observables from only $logM$ measurements.
In this work, we perform resource analysis for the circuits used in this algorithm, finding that quantum signal processing contributes most significantly to gate count and depth as system size increases.
arXiv Detail & Related papers (2024-09-09T16:40:21Z) - Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Calculating response functions of coupled oscillators using quantum phase estimation [40.31060267062305]
We study the problem of estimating frequency response functions of systems of coupled, classical harmonic oscillators using a quantum computer.
Our proposed quantum algorithm operates in the standard $s-sparse, oracle-based query access model.
We show that a simple adaptation of our algorithm solves the random glued-trees problem in time.
arXiv Detail & Related papers (2024-05-14T15:28:37Z) - Robust Extraction of Thermal Observables from State Sampling and
Real-Time Dynamics on Quantum Computers [49.1574468325115]
We introduce a technique that imposes constraints on the density of states, most notably its non-negativity, and show that this way, we can reliably extract Boltzmann weights from noisy time series.
Our work enables the implementation of the time-series algorithm on present-day quantum computers to study finite temperature properties of many-body quantum systems.
arXiv Detail & Related papers (2023-05-30T18:00:05Z) - Universal KPZ scaling in noisy hybrid quantum circuits [2.103498641058344]
Measurement-induced phase transitions (MIPT) have attracted increasing attention due to the rich phenomenology of entanglement structures.
In this Letter, we investigate the effect of quantum noise modeled by reset quantum channel acting on each site with probability $q$ on MIPT.
arXiv Detail & Related papers (2022-12-07T19:01:04Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Model-Independent Error Mitigation in Parametric Quantum Circuits and
Depolarizing Projection of Quantum Noise [1.5162649964542718]
Finding ground states and low-lying excitations of a given Hamiltonian is one of the most important problems in many fields of physics.
quantum computing on Noisy Intermediate-Scale Quantum (NISQ) devices offers the prospect to efficiently perform such computations.
Current quantum devices still suffer from inherent quantum noise.
arXiv Detail & Related papers (2021-11-30T16:08:01Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Simulating a ring-like Hubbard system with a quantum computer [0.0]
We develop a workflow to use current quantum computing hardware for solving quantum many-body problems.
We study a four-site Hubbard ring that exhibits a transition from a product state to an intrinsically interacting ground state as hopping amplitudes are changed.
We locate this transition and solve for the ground state energy with high quantitative accuracy using a variational quantum algorithm executed on an IBM quantum computer.
arXiv Detail & Related papers (2021-04-13T18:08:09Z) - Hamiltonian operator approximation for energy measurement and ground
state preparation [23.87373187143897]
We show how to approximate the Hamiltonian operator as a sum of propagators using a differential representation.
The proposed approach, named Hamiltonian operator approximation (HOA), is designed to benefit analog quantum simulators.
arXiv Detail & Related papers (2020-09-07T18:11:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.