Linear multidimensional regression with interactive fixed-effects
- URL: http://arxiv.org/abs/2209.11691v4
- Date: Mon, 26 Aug 2024 02:33:01 GMT
- Title: Linear multidimensional regression with interactive fixed-effects
- Authors: Hugo Freeman,
- Abstract summary: This paper studies a linear and additively separable model for multidimensional panel data of three or more dimensions with unobserved interactive fixed effects.
Two approaches are considered to account for these unobserved interactive fixed-effects when estimating coefficients.
The methods are implemented to estimate the demand elasticity for beer.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies a linear and additively separable model for multidimensional panel data of three or more dimensions with unobserved interactive fixed effects. Two approaches are considered to account for these unobserved interactive fixed-effects when estimating coefficients on the observed covariates. First, the model is embedded within the standard two dimensional panel framework and restrictions are formed under which the factor structure methods in Bai (2009) lead to consistent estimation of model parameters, but at slow rates of convergence. The second approach develops a kernel weighted fixed-effects method that is more robust to the multidimensional nature of the problem and can achieve the parametric rate of consistency under certain conditions. Theoretical results and simulations show some benefits to standard two-dimensional panel methods when the structure of the interactive fixed-effect term is known, but also highlight how the kernel weighted method performs well without knowledge of this structure. The methods are implemented to estimate the demand elasticity for beer.
Related papers
- Nonparametric estimation of Hawkes processes with RKHSs [1.775610745277615]
This paper addresses nonparametric estimation of nonlinear Hawkes processes, where the interaction functions are assumed to lie in a reproducing kernel space (RKHS)
Motivated by applications in neuroscience, the model allows complex interaction functions, in order to express exciting and inhibiting effects, but also a combination of both.
It shows that our method achieves a better performance compared to related nonparametric estimation techniques and suits neuronal applications.
arXiv Detail & Related papers (2024-11-01T14:26:50Z) - Complexity Matters: Effective Dimensionality as a Measure for Adversarial Robustness [0.7366405857677227]
In this work, we investigate the relationship between a model's effective dimensionality and its robustness properties.
We run experiments on commercial-scale models that are often used in real-world environments such as YOLO and ResNet.
We reveal a near-linear inverse relationship between effective dimensionality and adversarial robustness, that is models with a lower dimensionality exhibit better robustness.
arXiv Detail & Related papers (2024-10-24T09:01:34Z) - Bridging the Modality Gap: Dimension Information Alignment and Sparse Spatial Constraint for Image-Text Matching [10.709744162565274]
We propose a novel method called DIAS to bridge the modality gap from two aspects.
The method achieves 4.3%-10.2% rSum improvements on Flickr30k and MSCOCO benchmarks.
arXiv Detail & Related papers (2024-10-22T09:37:29Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
Contextual decision processes (CMDPs) describe a class of reinforcement learning problems in which the transition kernels and reward functions can change over time with different MDPs indexed by a context variable.
CMDPs serve as an important framework to model many real-world applications with time-varying environments.
We study CMDPs under two linear function approximation models: Model I with context-varying representations and common linear weights for all contexts; and Model II with common representations for all contexts and context-varying linear weights.
arXiv Detail & Related papers (2024-02-05T03:25:04Z) - Data-Driven Model Selections of Second-Order Particle Dynamics via
Integrating Gaussian Processes with Low-Dimensional Interacting Structures [0.9821874476902972]
We focus on the data-driven discovery of a general second-order particle-based model.
We present applications to modeling two real-world fish motion datasets.
arXiv Detail & Related papers (2023-11-01T23:45:15Z) - ProjB: An Improved Bilinear Biased ProjE model for Knowledge Graph
Completion [1.5576879053213302]
This work improves on ProjE KGE due to low computational complexity and high potential for model improvement.
Experimental results on benchmark Knowledge Graphs (KGs) such as FB15K and WN18 show that the proposed approach outperforms the state-of-the-art models in entity prediction task.
arXiv Detail & Related papers (2022-08-15T18:18:05Z) - Relative Pose from SIFT Features [50.81749304115036]
We derive a new linear constraint relating the unknown elements of the fundamental matrix and the orientation and scale.
The proposed constraint is tested on a number of problems in a synthetic environment and on publicly available real-world datasets on more than 80000 image pairs.
arXiv Detail & Related papers (2022-03-15T14:16:39Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
We derive a model for the covariance of the visual residuals in multi-view SfM, odometry and SLAM setups.
We validate our model with synthetic and real data and integrate it into photometric and feature-based Bundle Adjustment.
arXiv Detail & Related papers (2022-02-01T21:21:56Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.