Linear multidimensional regression with interactive fixed-effects
- URL: http://arxiv.org/abs/2209.11691v4
- Date: Mon, 26 Aug 2024 02:33:01 GMT
- Title: Linear multidimensional regression with interactive fixed-effects
- Authors: Hugo Freeman,
- Abstract summary: This paper studies a linear and additively separable model for multidimensional panel data of three or more dimensions with unobserved interactive fixed effects.
Two approaches are considered to account for these unobserved interactive fixed-effects when estimating coefficients.
The methods are implemented to estimate the demand elasticity for beer.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper studies a linear and additively separable model for multidimensional panel data of three or more dimensions with unobserved interactive fixed effects. Two approaches are considered to account for these unobserved interactive fixed-effects when estimating coefficients on the observed covariates. First, the model is embedded within the standard two dimensional panel framework and restrictions are formed under which the factor structure methods in Bai (2009) lead to consistent estimation of model parameters, but at slow rates of convergence. The second approach develops a kernel weighted fixed-effects method that is more robust to the multidimensional nature of the problem and can achieve the parametric rate of consistency under certain conditions. Theoretical results and simulations show some benefits to standard two-dimensional panel methods when the structure of the interactive fixed-effect term is known, but also highlight how the kernel weighted method performs well without knowledge of this structure. The methods are implemented to estimate the demand elasticity for beer.
Related papers
- Merging Models on the Fly Without Retraining: A Sequential Approach to Scalable Continual Model Merging [75.93960998357812]
Deep model merging represents an emerging research direction that combines multiple fine-tuned models to harness their capabilities across different tasks and domains.
Current model merging techniques focus on merging all available models simultaneously, with weight matrices-based methods being the predominant approaches.
We propose a training-free projection-based continual merging method that processes models sequentially.
arXiv Detail & Related papers (2025-01-16T13:17:24Z) - Nonparametric estimation of Hawkes processes with RKHSs [1.775610745277615]
This paper addresses nonparametric estimation of nonlinear Hawkes processes, where the interaction functions are assumed to lie in a reproducing kernel space (RKHS)
Motivated by applications in neuroscience, the model allows complex interaction functions, in order to express exciting and inhibiting effects, but also a combination of both.
It shows that our method achieves a better performance compared to related nonparametric estimation techniques and suits neuronal applications.
arXiv Detail & Related papers (2024-11-01T14:26:50Z) - Complexity Matters: Effective Dimensionality as a Measure for Adversarial Robustness [0.7366405857677227]
In this work, we investigate the relationship between a model's effective dimensionality and its robustness properties.
We run experiments on commercial-scale models that are often used in real-world environments such as YOLO and ResNet.
We reveal a near-linear inverse relationship between effective dimensionality and adversarial robustness, that is models with a lower dimensionality exhibit better robustness.
arXiv Detail & Related papers (2024-10-24T09:01:34Z) - Bridging the Modality Gap: Dimension Information Alignment and Sparse Spatial Constraint for Image-Text Matching [10.709744162565274]
We propose a novel method called DIAS to bridge the modality gap from two aspects.
The method achieves 4.3%-10.2% rSum improvements on Flickr30k and MSCOCO benchmarks.
arXiv Detail & Related papers (2024-10-22T09:37:29Z) - Sample Complexity Characterization for Linear Contextual MDPs [67.79455646673762]
Contextual decision processes (CMDPs) describe a class of reinforcement learning problems in which the transition kernels and reward functions can change over time with different MDPs indexed by a context variable.
CMDPs serve as an important framework to model many real-world applications with time-varying environments.
We study CMDPs under two linear function approximation models: Model I with context-varying representations and common linear weights for all contexts; and Model II with common representations for all contexts and context-varying linear weights.
arXiv Detail & Related papers (2024-02-05T03:25:04Z) - Data-Driven Model Selections of Second-Order Particle Dynamics via
Integrating Gaussian Processes with Low-Dimensional Interacting Structures [0.9821874476902972]
We focus on the data-driven discovery of a general second-order particle-based model.
We present applications to modeling two real-world fish motion datasets.
arXiv Detail & Related papers (2023-11-01T23:45:15Z) - Efficient Interpretable Nonlinear Modeling for Multiple Time Series [5.448070998907116]
This paper proposes an efficient nonlinear modeling approach for multiple time series.
It incorporates nonlinear interactions among different time-series variables.
Experimental results show that the proposed algorithm improves the identification of the support of the VAR coefficients in a parsimonious manner.
arXiv Detail & Related papers (2023-09-29T11:42:59Z) - Linked shrinkage to improve estimation of interaction effects in
regression models [0.0]
We develop an estimator that adapts well to two-way interaction terms in a regression model.
We evaluate the potential of the model for inference, which is notoriously hard for selection strategies.
Our models can be very competitive to a more advanced machine learner, like random forest, even for fairly large sample sizes.
arXiv Detail & Related papers (2023-09-25T10:03:39Z) - StepMix: A Python Package for Pseudo-Likelihood Estimation of Generalized Mixture Models with External Variables [0.7852714805965528]
StepMix is an open-source Python package for the pseudo-likelihood estimation.
It implements the most important stepwise estimation methods from the literature.
StepMix follows the object-oriented design of the scikit-learn library and provides an additional R wrapper.
arXiv Detail & Related papers (2023-04-07T22:27:18Z) - (Fusionformer):Exploiting the Joint Motion Synergy with Fusion Network
Based On Transformer for 3D Human Pose Estimation [1.52292571922932]
Many previous methods lack the understanding of local joint information.cite8888987considers the temporal relationship of a single joint in this work.
Our proposed textbfFusionformer method introduces a global-temporal self-trajectory module and a cross-temporal self-trajectory module.
The results show an improvement of 2.4% MPJPE and 4.3% P-MPJPE on the Human3.6M dataset.
arXiv Detail & Related papers (2022-10-08T12:22:10Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - ProjB: An Improved Bilinear Biased ProjE model for Knowledge Graph
Completion [1.5576879053213302]
This work improves on ProjE KGE due to low computational complexity and high potential for model improvement.
Experimental results on benchmark Knowledge Graphs (KGs) such as FB15K and WN18 show that the proposed approach outperforms the state-of-the-art models in entity prediction task.
arXiv Detail & Related papers (2022-08-15T18:18:05Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
Canonical Correlation Analysis (CCA) is a method for feature extraction of two views by finding maximally correlated linear projections of them.
We introduce a novel dynamic scaling method for training an input-dependent canonical correlation model.
arXiv Detail & Related papers (2022-03-23T12:52:49Z) - Relative Pose from SIFT Features [50.81749304115036]
We derive a new linear constraint relating the unknown elements of the fundamental matrix and the orientation and scale.
The proposed constraint is tested on a number of problems in a synthetic environment and on publicly available real-world datasets on more than 80000 image pairs.
arXiv Detail & Related papers (2022-03-15T14:16:39Z) - A Model for Multi-View Residual Covariances based on Perspective
Deformation [88.21738020902411]
We derive a model for the covariance of the visual residuals in multi-view SfM, odometry and SLAM setups.
We validate our model with synthetic and real data and integrate it into photometric and feature-based Bundle Adjustment.
arXiv Detail & Related papers (2022-02-01T21:21:56Z) - Poseur: Direct Human Pose Regression with Transformers [119.79232258661995]
We propose a direct, regression-based approach to 2D human pose estimation from single images.
Our framework is end-to-end differentiable, and naturally learns to exploit the dependencies between keypoints.
Ours is the first regression-based approach to perform favorably compared to the best heatmap-based pose estimation methods.
arXiv Detail & Related papers (2022-01-19T04:31:57Z) - Towards Robust and Adaptive Motion Forecasting: A Causal Representation
Perspective [72.55093886515824]
We introduce a causal formalism of motion forecasting, which casts the problem as a dynamic process with three groups of latent variables.
We devise a modular architecture that factorizes the representations of invariant mechanisms and style confounders to approximate a causal graph.
Experiment results on synthetic and real datasets show that our three proposed components significantly improve the robustness and reusability of the learned motion representations.
arXiv Detail & Related papers (2021-11-29T18:59:09Z) - Estimation of Bivariate Structural Causal Models by Variational Gaussian
Process Regression Under Likelihoods Parametrised by Normalising Flows [74.85071867225533]
Causal mechanisms can be described by structural causal models.
One major drawback of state-of-the-art artificial intelligence is its lack of explainability.
arXiv Detail & Related papers (2021-09-06T14:52:58Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - A Bayesian approach to modeling topic-metadata relationships [0.0]
Methods used to estimate relationships between topics and metadata must take into account that the topical structure is not directly observed.
A frequently used procedure to achieve this is the method of composition performing multiple repeated linear regressions of sampled topic proportions.
We propose two modifications to this approach: First, we substantially refine the existing implementation of the method of composition from the R package stm by replacing linear regression with the more appropriate Beta regression.
arXiv Detail & Related papers (2021-04-06T13:28:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.