The Approximate Fisher Influence Function: Faster Estimation of Data Influence in Statistical Models
- URL: http://arxiv.org/abs/2407.08169v2
- Date: Thu, 10 Apr 2025 02:33:37 GMT
- Title: The Approximate Fisher Influence Function: Faster Estimation of Data Influence in Statistical Models
- Authors: Omri Lev, Ashia C. Wilson,
- Abstract summary: Quantifying the influence of infinitesimal reform changes in model performance is crucial for understanding and improving machine learning models.<n>We show that our method offers significant computational advantages over current methods.
- Score: 5.893124686141781
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantifying the influence of infinitesimal changes in training data on model performance is crucial for understanding and improving machine learning models. In this work, we reformulate this problem as a weighted empirical risk minimization and enhance existing influence function-based methods by using information geometry to derive a new algorithm to estimate influence. Our formulation proves versatile across various applications, and we further demonstrate in simulations how it remains informative even in non-convex cases. Furthermore, we show that our method offers significant computational advantages over current Newton step-based methods.
Related papers
- Capturing the Temporal Dependence of Training Data Influence [100.91355498124527]
We formalize the concept of trajectory-specific leave-one-out influence, which quantifies the impact of removing a data point during training.
We propose data value embedding, a novel technique enabling efficient approximation of trajectory-specific LOO.
As data value embedding captures training data ordering, it offers valuable insights into model training dynamics.
arXiv Detail & Related papers (2024-12-12T18:28:55Z) - Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
Diffusion models have led to significant advancements in generative modelling.
Yet their widespread adoption poses challenges regarding data attribution and interpretability.
We develop an influence functions framework to address these challenges.
arXiv Detail & Related papers (2024-10-17T17:59:02Z) - Explanatory Model Monitoring to Understand the Effects of Feature Shifts on Performance [61.06245197347139]
We propose a novel approach to explain the behavior of a black-box model under feature shifts.
We refer to our method that combines concepts from Optimal Transport and Shapley Values as Explanatory Performance Estimation.
arXiv Detail & Related papers (2024-08-24T18:28:19Z) - Neural Networks with Causal Graph Constraints: A New Approach for Treatment Effects Estimation [0.951494089949975]
We present a new model, NN-CGC, that considers additional information from the causal graph.
We show that our method is robust to imperfect causal graphs and that using partial causal information is preferable to ignoring it.
arXiv Detail & Related papers (2024-04-18T14:57:17Z) - PETScML: Second-order solvers for training regression problems in Scientific Machine Learning [0.22499166814992438]
In recent years, we have witnessed the emergence of scientific machine learning as a data-driven tool for the analysis.
We introduce a software built on top of the Portable and Extensible Toolkit for Scientific computation to bridge the gap between deep-learning software and conventional machine-learning techniques.
arXiv Detail & Related papers (2024-03-18T18:59:42Z) - Machine Unlearning of Pre-trained Large Language Models [17.40601262379265]
This study investigates the concept of the right to be forgotten' within the context of large language models (LLMs)
We explore machine unlearning as a pivotal solution, with a focus on pre-trained models.
arXiv Detail & Related papers (2024-02-23T07:43:26Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - Machine unlearning through fine-grained model parameters perturbation [26.653596302257057]
We propose fine-grained Top-K and Random-k parameters perturbed inexact machine unlearning strategies.
We also tackle the challenge of evaluating the effectiveness of machine unlearning.
arXiv Detail & Related papers (2024-01-09T07:14:45Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
We propose a novel and general theoretical scheme for a non-decreasing performance guarantee of model-based RL (MBRL)
Our follow-up derived bounds reveal the relationship between model shifts and performance improvement.
A further example demonstrates that learning models from a dynamically-varying number of explorations benefit the eventual returns.
arXiv Detail & Related papers (2022-10-15T17:57:43Z) - Algorithms that Approximate Data Removal: New Results and Limitations [2.6905021039717987]
We study the problem of deleting user data from machine learning models trained using empirical risk minimization.
We develop an online unlearning algorithm that is both computationally and memory efficient.
arXiv Detail & Related papers (2022-09-25T17:20:33Z) - Exploring Example Influence in Continual Learning [26.85320841575249]
Continual Learning (CL) sequentially learns new tasks like human beings, with the goal to achieve better Stability (S) and Plasticity (P)
It is valuable to explore the influence difference on S and P among training examples, which may improve the learning pattern towards better SP.
We propose a simple yet effective MetaSP algorithm to simulate the two key steps in the perturbation of IF and obtain the S- and P-aware example influence.
arXiv Detail & Related papers (2022-09-25T15:17:37Z) - Making Linear MDPs Practical via Contrastive Representation Learning [101.75885788118131]
It is common to address the curse of dimensionality in Markov decision processes (MDPs) by exploiting low-rank representations.
We consider an alternative definition of linear MDPs that automatically ensures normalization while allowing efficient representation learning.
We demonstrate superior performance over existing state-of-the-art model-based and model-free algorithms on several benchmarks.
arXiv Detail & Related papers (2022-07-14T18:18:02Z) - Large Scale Mask Optimization Via Convolutional Fourier Neural Operator
and Litho-Guided Self Training [54.16367467777526]
We present a Convolutional Neural Operator (CFCF) that can efficiently learn mask tasks.
For the first time, our machine learning-based framework outperforms state-of-the-art numerical mask dataset.
arXiv Detail & Related papers (2022-07-08T16:39:31Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Learning to Refit for Convex Learning Problems [11.464758257681197]
We propose a framework to learn to estimate optimized model parameters for different training sets using neural networks.
We rigorously characterize the power of neural networks to approximate convex problems.
arXiv Detail & Related papers (2021-11-24T15:28:50Z) - Physics-informed linear regression is a competitive approach compared to
Machine Learning methods in building MPC [0.8135412538980287]
We show that control in general leads to satisfactory reductions in heating and cooling energy compared to the building's baseline controller.
We also see that the physics-informed ARMAX models have a lower computational burden, and a superior sample efficiency compared to the Machine Learning based models.
arXiv Detail & Related papers (2021-10-29T16:56:05Z) - Kernel-Based Models for Influence Maximization on Graphs based on
Gaussian Process Variance Minimization [9.357483974291899]
We introduce and investigate a novel model for influence (IM) on graphs.
Data-driven approaches can be applied to determine proper kernels for this IM model.
Compared to models in this field that rely on costly Monte-Carlo simulations, our model allows for a simple and cost-efficient update strategy.
arXiv Detail & Related papers (2021-03-02T08:55:34Z) - Influence Functions in Deep Learning Are Fragile [52.31375893260445]
influence functions approximate the effect of samples in test-time predictions.
influence estimates are fairly accurate for shallow networks.
Hessian regularization is important to get highquality influence estimates.
arXiv Detail & Related papers (2020-06-25T18:25:59Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
This paper derives an analytical relationship between the density of the training data and the control performance.
We formulate a quality measure for the data set, which we refer to as $rho$-gap.
We show how the $rho$-gap can be applied to a feedback linearizing control law.
arXiv Detail & Related papers (2020-05-25T12:13:49Z) - Model-Augmented Actor-Critic: Backpropagating through Paths [81.86992776864729]
Current model-based reinforcement learning approaches use the model simply as a learned black-box simulator.
We show how to make more effective use of the model by exploiting its differentiability.
arXiv Detail & Related papers (2020-05-16T19:18:10Z) - Active Learning for Gaussian Process Considering Uncertainties with
Application to Shape Control of Composite Fuselage [7.358477502214471]
We propose two new active learning algorithms for the Gaussian process with uncertainties.
We show that the proposed approach can incorporate the impact from uncertainties, and realize better prediction performance.
This approach has been applied to improving the predictive modeling for automatic shape control of composite fuselage.
arXiv Detail & Related papers (2020-04-23T02:04:53Z) - Information Theoretic Model Predictive Q-Learning [64.74041985237105]
We present a novel theoretical connection between information theoretic MPC and entropy regularized RL.
We develop a Q-learning algorithm that can leverage biased models.
arXiv Detail & Related papers (2019-12-31T00:29:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.