Coulomb-correlated electron number states in a transmission electron
microscope beam
- URL: http://arxiv.org/abs/2209.12300v2
- Date: Wed, 26 Apr 2023 16:59:43 GMT
- Title: Coulomb-correlated electron number states in a transmission electron
microscope beam
- Authors: Rudolf Haindl, Armin Feist, Till Domr\"ose, Marcel M\"oller, John H.
Gaida, Sergey V. Yalunin, and Claus Ropers
- Abstract summary: Event-based electron spectroscopy allows a spatial and spectral characterization of the electron ensemble emitted by each laser pulse.
We identify distinctive energy and momentum correlations arising from acceleration-enhanced interparticle energy exchange.
We observe field-controllable electron antibunching, attributed primarily to transverse Coulomb deflection.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate the generation of Coulomb-correlated pair, triple and
quadruple states of free electrons by femtosecond photoemission from a
nanoscale field emitter inside a transmission electron microscope. Event-based
electron spectroscopy allows a spatial and spectral characterization of the
electron ensemble emitted by each laser pulse. We identify distinctive energy
and momentum correlations arising from acceleration-enhanced interparticle
energy exchange, revealing strong few-body Coulomb interactions at an energy
scale of about two electronvolts. State-sorted beam caustics show a discrete
increase in virtual source size and longitudinal source shift for few-electron
states, associated with transverse momentum correlations. We observe
field-controllable electron antibunching, attributed primarily to transverse
Coulomb deflection. The pronounced spatial and spectral characteristics of
these electron number states allow filtering schemes that control the
statistical distribution of the pulse charge. In this way, the fraction of
specific few-electron states can be actively suppressed or enhanced,
facilitating the preparation of highly non-Poissonian electron beams for
microscopy and lithography, including future heralding schemes and correlated
multi-electron probing.
Related papers
- Electrons herald non-classical light [0.44270590458998854]
We demonstrate the coherent parametric generation of non-classical states of light by free electrons.
We show that the quantized electron energy loss heralds the number of photons generated in a dielectric waveguide.
The approach facilitates the tailored preparation of higher-number Fock and other optical quantum states.
arXiv Detail & Related papers (2024-09-17T15:55:54Z) - Structured free-space optical fields for transverse and longitudinal control of electron matter waves [0.0]
Controlling free-electron momentum states is of high interest in electron microscopy to achieve momentum and energy resolved probing and manipulation of physical systems.
Here, we demonstrate both longitudinal and transverse phase control of a slow electron wavepacket by extending the Kapitza-Dirac effect to spatially-structured pulsed laser beams.
The interaction reveals the formation of distinct electron transverse momentum orders, each demonstrating a comb-like electron energy spectrum.
arXiv Detail & Related papers (2024-04-05T16:00:39Z) - Deterministic Quantum Field Trajectories and Macroscopic Effects [0.0]
The root to macroscopic quantum effects is revealed based on the quasiparticle model of collective excitations in an arbitrary degenerate electron gas.
It is remarked that any quantum many body system composed of large number of interacting particles acts as a dual arm device controlling the microscopic single particle effects with one hand and the macroscopic phenomena with the other.
arXiv Detail & Related papers (2023-11-16T06:23:09Z) - Quantum interaction of sub-relativistic aloof electrons with mesoscopic
samples [91.3755431537592]
Relativistic electrons experience very slight wave packet distortion and negligible momentum recoil when interacting with nanometer-sized samples.
Modelling fast electrons as classical point-charges provides extremely accurate theoretical predictions of energy-loss spectra.
arXiv Detail & Related papers (2022-11-14T15:22:37Z) - Driving Force and Nonequilibrium Vibronic Dynamics in Charge Separation
of Strongly Bound Electron-Hole Pairs [59.94347858883343]
We study the dynamics of charge separation in one, two and three-dimensional donor-acceptor networks.
This allows us to identify the precise conditions in which underdamped vibrational motion induces efficient long-range charge separation.
arXiv Detail & Related papers (2022-05-11T17:51:21Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Stochastic Variational Approach to Small Atoms and Molecules Coupled to
Quantum Field Modes [55.41644538483948]
We present a variational calculation (SVM) of energies and wave functions of few particle systems coupled to quantum fields in cavity QED.
Examples for a two-dimensional trion and confined electrons as well as for the He atom and the Hydrogen molecule are presented.
arXiv Detail & Related papers (2021-08-25T13:40:42Z) - Controlled coherent dynamics of [VO(TPP)], a prototype molecular nuclear
qudit with an electronic ancilla [50.002949299918136]
We show that [VO(TPP)] (vanadyl tetraphenylporphyrinate) is a promising system suitable to implement quantum computation algorithms.
It embeds an electronic spin 1/2 coupled through hyperfine interaction to a nuclear spin 7/2, both characterized by remarkable coherence.
arXiv Detail & Related papers (2021-03-15T21:38:41Z) - Orbital angular momentum superposition states in transmission electron
microscopy and bichromatic multiphoton ionization [0.0]
coherent control of electron beams and ultrafast electron wave packets dynamics have attracted significant attention in electron microscopy and atomic physics.
We demonstrate the generation and manipulation of tailored electron orbital angular momentum (OAM) superposition states either by employing customized holographic diffraction masks in a transmission electron microscope or by atomic multiphoton ionization utilizing pulse-shaper generated carrier-envelope phase stable bichromatic ultrashort laser pulses.
arXiv Detail & Related papers (2020-08-18T11:47:06Z) - Free-Electron Shaping Using Quantum Light [0.0]
Here, we show that control over electron pulse shaping, compression, and statistics can be improved by replacing coherent laser excitation by interaction with quantum light.
We find that compression is accelerated for fixed optical intensity by using phase-squeezed light, while amplitude squeezing produces ultrashort double-pulse profiles.
The generated electron pulses exhibit periodic revivals in complete analogy to the optical Talbot effect.
arXiv Detail & Related papers (2020-08-03T15:35:43Z) - Resonant high-energy bremsstrahlung of ultrarelativistic electrons in
the field of a nucleus and a pulsed light wave [68.8204255655161]
Research investigates the resonant high-energy spontaneous bremsstrahlung of ultrarelativistic electrons with considerable energies in the field of a nucleus and a quasimonochromatic laser wave.
arXiv Detail & Related papers (2020-04-05T16:27:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.