論文の概要: Convergence of score-based generative modeling for general data
distributions
- arxiv url: http://arxiv.org/abs/2209.12381v1
- Date: Mon, 26 Sep 2022 02:38:36 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 15:39:46.745411
- Title: Convergence of score-based generative modeling for general data
distributions
- Title(参考訳): 一般データ分布に対するスコアベース生成モデリングの収束
- Authors: Holden Lee, Jianfeng Lu, Yixin Tan
- Abstract要約: 機能的不等式や強い滑らかさの仮定を満たすデータ分布に依存しない拡散モデルに収束保証を与える。
ワッサーシュタイン距離保証は、有界な支持あるいは十分に崩壊するテールの分布に対して、さらに滑らかな仮定を持つ分布に対するテレビ保証と同様に得られる。
- 参考スコア(独自算出の注目度): 9.953088581242845
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We give polynomial convergence guarantees for denoising diffusion models that
do not rely on the data distribution satisfying functional inequalities or
strong smoothness assumptions. Assuming a $L^2$-accurate score estimate, we
obtain Wasserstein distance guarantees for any distributions of bounded support
or sufficiently decaying tails, as well as TV guarantees for distributions with
further smoothness assumptions.
- Abstract(参考訳): 関数の不等式や強い滑らかさの仮定を満たすデータ分布に依存しない拡散モデルに多項式収束保証を与える。
l^2$-正確なスコア推定を仮定すると、有界な支持または十分に減衰した尾の分布に対するワッサースタイン距離保証と、さらに滑らかな仮定を持つ分布に対するtv保証が得られる。
関連論文リスト
- Theory on Score-Mismatched Diffusion Models and Zero-Shot Conditional Samplers [49.97755400231656]
本報告では,明示的な次元の一般スコアミスマッチ拡散サンプリング器を用いた最初の性能保証について述べる。
その結果, スコアミスマッチは, 目標分布とサンプリング分布の分布バイアスとなり, 目標分布とトレーニング分布の累積ミスマッチに比例することがわかった。
この結果は、測定ノイズに関係なく、任意の条件モデルに対するゼロショット条件付きサンプリングに直接適用することができる。
論文 参考訳(メタデータ) (2024-10-17T16:42:12Z) - Convergence of Score-Based Discrete Diffusion Models: A Discrete-Time Analysis [56.442307356162864]
連続時間マルコフ連鎖(CTMC)に基づくスコアベース離散拡散モデルの理論的側面について検討する。
本稿では,事前定義された時間点におけるスコア推定値を利用する離散時間サンプリングアルゴリズムを一般状態空間$[S]d$に導入する。
我々の収束解析はジルサノフ法を用いて離散スコア関数の重要な性質を確立する。
論文 参考訳(メタデータ) (2024-10-03T09:07:13Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Uncertainty Quantification via Stable Distribution Propagation [60.065272548502]
本稿では,ニューラルネットワークによる安定確率分布の伝播手法を提案する。
提案手法は局所線形化に基づいており,ReLU非線型性に対する全変動距離の近似値として最適であることを示す。
論文 参考訳(メタデータ) (2024-02-13T09:40:19Z) - On diffusion-based generative models and their error bounds: The log-concave case with full convergence estimates [5.13323375365494]
我々は,強い対数対数データの下での拡散に基づく生成モデルの収束挙動を理論的に保証する。
スコア推定に使用される関数のクラスは、スコア関数上のリプシッツネスの仮定を避けるために、リプシッツ連続関数からなる。
この手法はサンプリングアルゴリズムにおいて最もよく知られた収束率をもたらす。
論文 参考訳(メタデータ) (2023-11-22T18:40:45Z) - Probabilistic Matching of Real and Generated Data Statistics in Generative Adversarial Networks [0.6906005491572401]
本稿では,あるデータ統計量の分布が実データの分布と一致することを確実にする手法を提案する。
提案手法を合成データセットと実世界のデータセットで評価し,提案手法の性能向上を実証した。
論文 参考訳(メタデータ) (2023-06-19T14:03:27Z) - Score Approximation, Estimation and Distribution Recovery of Diffusion
Models on Low-Dimensional Data [68.62134204367668]
本稿では,未知の低次元線形部分空間上でデータをサポートする場合の拡散モデルのスコア近似,推定,分布回復について検討する。
適切に選択されたニューラルネットワークアーキテクチャでは、スコア関数を正確に近似し、効率的に推定することができる。
推定スコア関数に基づいて生成された分布は、データ幾何学構造を捕捉し、データ分布の近傍に収束する。
論文 参考訳(メタデータ) (2023-02-14T17:02:35Z) - Wasserstein Distributionally Robust Optimization via Wasserstein
Barycenters [10.103413548140848]
確率分布の一定距離内にデータサンプルから構築した名目分布から,最も有害な分布下で良好に機能するデータ駆動決定を求める。
本稿では,複数の情報源からのデータサンプルの集約として,Wasserstein Barycenterという概念を用いて,分散的に頑健な最適化問題における名目分布を構築することを提案する。
論文 参考訳(メタデータ) (2022-03-23T02:03:47Z) - Robust Estimation for Nonparametric Families via Generative Adversarial
Networks [92.64483100338724]
我々は,高次元ロバストな統計問題を解くためにGAN(Generative Adversarial Networks)を設計するためのフレームワークを提供する。
我々の研究は、これらをロバスト平均推定、第二モーメント推定、ロバスト線形回帰に拡張する。
技術面では、提案したGAN損失は、スムーズで一般化されたコルモゴロフ-スミルノフ距離と見なすことができる。
論文 参考訳(メタデータ) (2022-02-02T20:11:33Z) - Wasserstein Generative Learning of Conditional Distribution [6.051520664893158]
条件分布学習のためのワッサーシュタイン生成手法を提案する。
提案手法により生成された条件付きサンプリング分布の非漸近誤差境界を確立する。
論文 参考訳(メタデータ) (2021-12-19T01:55:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。