論文の概要: EasyRec: An easy-to-use, extendable and efficient framework for building
industrial recommendation systems
- arxiv url: http://arxiv.org/abs/2209.12766v1
- Date: Mon, 26 Sep 2022 15:16:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 17:18:14.654360
- Title: EasyRec: An easy-to-use, extendable and efficient framework for building
industrial recommendation systems
- Title(参考訳): EasyRec: 産業レコメンデーションシステム構築のための使いやすい、拡張可能な、効率的なフレームワーク
- Authors: Mengli Cheng, Yue Gao, Guoqiang Liu, HongSheng Jin, Xiaowen Zhang
- Abstract要約: EasyRecは使いやすく、拡張可能で、効率的なレコメンデーションフレームワークです。
EasyRecは、カスタムモデル構築の労力を削減するために、モジュラーでプラグイン可能なデザインパターンを採用する。
EasyRecは、絶え間なく変化するデータ分散に迅速に適応するために、オンライン学習を適用します。
- 参考スコア(独自算出の注目度): 16.540873572523086
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present EasyRec, an easy-to-use, extendable and efficient recommendation
framework for building industrial recommendation systems. Our EasyRec framework
is superior in the following aspects: first, EasyRec adopts a modular and
pluggable design pattern to reduce the efforts to build custom models; second,
EasyRec implements hyper-parameter optimization and feature selection
algorithms to improve model performance automatically; third, EasyRec applies
online learning to fast adapt to the ever-changing data distribution. The code
is released: https://github.com/alibaba/EasyRec.
- Abstract(参考訳): 産業レコメンデーションシステム構築のための,使いやすい,拡張可能な,効率的なレコメンデーションフレームワークであるEasyRecを提案する。
まず、EasyRecはモジュラーでプラグイン可能なデザインパターンを採用し、カスタムモデル構築の労力を削減します。次に、EasyRecはハイパーパラメータ最適化と機能選択アルゴリズムを実装し、モデルパフォーマンスを自動で改善します。
コードはhttps://github.com/alibaba/easyrec。
関連論文リスト
- EasyRAG: Efficient Retrieval-Augmented Generation Framework for Automated Network Operations [24.142649256624082]
本稿では,自動ネットワーク操作のためのシンプルで軽量で効率的な検索拡張生成フレームワークであるEasyRAGを提案する。
私たちのフレームワークには3つの利点があります。
第2の方法は,BM25検索とBGE-Rerankerのリグレードから成り,どのモデルも微調整する必要がなく,最小限のVRAMを占有し,デプロイが容易で,高度にスケーラブルである。
最後のものは効率的な推論であり、我々は粗いランク付け、再ランク付け、生成プロセス全体の効率的な推論促進スキームを設計した。
論文 参考訳(メタデータ) (2024-10-14T09:17:43Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
大規模言語モデル(LLM)は急速に進歩し、印象的な機能を示している。
In-Context Learning (ICL) など。
効率的なファインチューニング(PEFT)は、現在2つの主要な拡張方法である。
下流タスクへのLLM。
我々は、モデルが微調整なしで新しいタスクに迅速に適応できるパラダイムである参照信頼復号(RTD)を提案する。
論文 参考訳(メタデータ) (2024-09-30T10:48:20Z) - End-to-End Learnable Item Tokenization for Generative Recommendation [51.82768744368208]
本稿では,アイテムのトークン化と生成レコメンデーションをシームレスに統合した,新しいエンドツーエンド生成レコメンダであるETEGRecを提案する。
本フレームワークは、アイテムトークン化器と生成レコメンデータで構成されるデュアルエンコーダデコーダアーキテクチャに基づいて開発されている。
論文 参考訳(メタデータ) (2024-09-09T12:11:53Z) - EasyRec: Simple yet Effective Language Models for Recommendation [6.311058599430178]
EasyRecは、テキストベースの意味理解を協調的な信号とシームレスに統合する、効果的で使いやすいアプローチである。
EasyRecでは、コントラスト学習と協調的な言語モデルチューニングを組み合わせた、テキストビヘイビアアライメントフレームワークを採用している。
この研究は、プラグイン・アンド・プレイコンポーネントとしてEasyRecをテキスト強化協調フィルタリングフレームワークにシームレスに統合する可能性を強調している。
論文 参考訳(メタデータ) (2024-08-16T16:09:59Z) - Towards Modular LLMs by Building and Reusing a Library of LoRAs [64.43376695346538]
マルチタスクデータに対して最適なアダプタライブラリを構築する方法について検討する。
モデルベースクラスタリング(MBC)を導入し,パラメータの類似性に基づいてタスクをグループ化する手法を提案する。
ライブラリを再使用するために,最も関連性の高いアダプタの動的選択を可能にする新しいゼロショットルーティング機構であるArrowを提案する。
論文 参考訳(メタデータ) (2024-05-18T03:02:23Z) - Aligning GPTRec with Beyond-Accuracy Goals with Reinforcement Learning [67.71952251641545]
GPTRecはアイテム・バイ・イテムレコメンデーションのためのTop-Kモデルの代替品である。
GPTRecは,従来のグリーディ・リグレード手法よりも精度とセカンダリ・メトリクスのトレードオフが優れていることを示す。
2つのデータセットに対する実験により、GPTRecのNext-K生成アプローチは、古典的なグリージーな再ランク技術よりも精度と二次メトリクスのトレードオフが優れていることが示された。
論文 参考訳(メタデータ) (2024-03-07T19:47:48Z) - LlamaRec: Two-Stage Recommendation using Large Language Models for
Ranking [10.671747198171136]
ランキングベースレコメンデーション(LlamaRec)のための大規模言語モデルを用いた2段階フレームワークを提案する。
特に,ユーザインタラクション履歴に基づいて候補を検索するために,小規模なシーケンシャルレコメンデータを用いる。
LlamaRecは、推奨パフォーマンスと効率の両方において、データセットの優れたパフォーマンスを一貫して達成している。
論文 参考訳(メタデータ) (2023-10-25T06:23:48Z) - Mem-Rec: Memory Efficient Recommendation System using Alternative
Representation [6.542635536704625]
MEM-RECは、テーブルを埋め込むための新しい代替表現手法である。
MEM-RECはレコメンデーション品質を維持するだけでなく、埋め込み遅延を改善することができる。
論文 参考訳(メタデータ) (2023-05-12T02:36:07Z) - Easy Batch Normalization [73.89838982331453]
簡単な例は、機械学習モデルが高い信頼性で正しく分類するサンプルである。
本稿では,標準および堅牢な精度向上のための簡単な例として,補助バッチ正規化を提案する。
論文 参考訳(メタデータ) (2022-07-18T21:01:09Z) - Re-parameterizing Your Optimizers rather than Architectures [119.08740698936633]
本稿では,モデル固有の事前知識を構造学に取り入れ,汎用モデル(簡易モデル)の学習に使用する新しいパラダイムを提案する。
実装として,モデル固有のハイパーパラメータの集合に従って勾配を変更することによって,事前知識を付加する手法を提案する。
Reprでトレーニングされた単純なモデルに対しては、VGGスタイルのプレーンモデルに注目し、ReprでトレーニングされたそのようなシンプルなモデルがRep-VGGと呼ばれ、最近のよく設計されたモデルと同等に動作することを示す。
論文 参考訳(メタデータ) (2022-05-30T16:55:59Z) - AutoRec: An Automated Recommender System [44.11798716678736]
エコシステムから拡張された、オープンソースの自動機械学習(AutoML)プラットフォームであるAutoRecを紹介します。
AutoRecはスパースとディープインプットの両方に対応可能な、非常にフレキシブルなパイプラインをサポートする。
ベンチマークデータセットで実施された実験によると、AutoRecは信頼性が高く、事前の知識なしに最高のモデルに似たモデルを特定することができる。
論文 参考訳(メタデータ) (2020-06-26T17:04:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。