論文の概要: Introductory Studies of Swarm Intelligence Techniques
- arxiv url: http://arxiv.org/abs/2209.12823v1
- Date: Mon, 26 Sep 2022 16:29:55 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-27 15:58:05.387897
- Title: Introductory Studies of Swarm Intelligence Techniques
- Title(参考訳): 群知能技術の導入研究
- Authors: Thounaojam Chinglemba, Soujanyo Biswas, Debashish Malakar, Vivek
Meena, Debojyoti Sarkar, and Anupam Biswas
- Abstract要約: 群れ知能は、個体の集団的研究と、群れの知的行動につながる相互相互作用を含む。
この章では、様々な人口ベースのSIアルゴリズム、基本構造、数学的モデルについて紹介している。
- 参考スコア(独自算出の注目度): 1.2930503923129208
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: With the rapid upliftment of technology, there has emerged a dire need to
fine-tune or optimize certain processes, software, models or structures, with
utmost accuracy and efficiency. Optimization algorithms are preferred over
other methods of optimization through experimentation or simulation, for their
generic problem-solving abilities and promising efficacy with the least human
intervention. In recent times, the inducement of natural phenomena into
algorithm design has immensely triggered the efficiency of optimization process
for even complex multi-dimensional, non-continuous, non-differentiable and
noisy problem search spaces. This chapter deals with the Swarm intelligence
(SI) based algorithms or Swarm Optimization Algorithms, which are a subset of
the greater Nature Inspired Optimization Algorithms (NIOAs). Swarm intelligence
involves the collective study of individuals and their mutual interactions
leading to intelligent behavior of the swarm. The chapter presents various
population-based SI algorithms, their fundamental structures along with their
mathematical models.
- Abstract(参考訳): 技術の急速な向上により、特定のプロセス、ソフトウェア、モデル、構造を最大限の精度と効率で微調整または最適化する必要が出てきた。
最適化アルゴリズムは、実験やシミュレーションによる他の最適化方法よりも、汎用的な問題解決能力と、人間の介入を最小限に抑える有望な有効性のために好まれる。
近年, アルゴリズム設計における自然現象の誘導は, 複雑な多次元, 非連続, 非微分可能, ノイズの多い問題探索空間の最適化プロセスの効率化を大いに引き起こしている。
この章は、より自然にインスパイアされた最適化アルゴリズム(nioas)のサブセットであるswarm intelligence(si)ベースのアルゴリズムまたはswarm optimizationアルゴリズムを扱う。
集団知性(swarm intelligence)とは、集団の知的行動につながる個人とその相互相互作用の集団研究である。
この章は様々な人口ベースのsiアルゴリズムとそれらの数学的モデルの基本構造を提示している。
関連論文リスト
- Nature-Inspired Algorithms in Optimization: Introduction, Hybridization
and Insights [1.6589012298747952]
ベンチマークは最適化アルゴリズムの性能を評価する上で重要である。
本章では、最適化の概要、自然に触発されたアルゴリズム、ハイブリッド化の役割について論じる。
論文 参考訳(メタデータ) (2023-08-30T11:33:22Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Enhancing Machine Learning Model Performance with Hyper Parameter
Optimization: A Comparative Study [0.0]
機械学習における最も重要な問題のひとつは、トレーニングモデルに適切なハイパーパラメータの選択である。
ハイパーパラメータ最適化(HPO)は、人工知能研究が最近注目している話題である。
本研究では,グリッドやランダム探索,ベイズ最適化などの古典的手法,遺伝的アルゴリズムや粒子群最適化といった人口ベースアルゴリズムについて論じる。
論文 参考訳(メタデータ) (2023-02-14T10:12:10Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
メタヒューリスティックス(Metaheuristics)は、古典的なアプローチでは解決できない難解な問題を解くために使用される普遍的な最適化アルゴリズムである。
本稿では,キャストに基づく新しい社会認知メタヒューリスティックの構築を目標とし,このアルゴリズムのいくつかのバージョンを時間遅延システムモデルの最適化に適用する。
論文 参考訳(メタデータ) (2022-10-23T22:21:10Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
本稿では,ニューラルネットワークに基づくアルゴリズムの古典的最適化フレームワークへの導入に関する批判的分析を行う。
性能, 転送可能性, 計算コスト, 大規模インスタンスなど, これらのアルゴリズムの基本的側面を分析するために, 総合的研究を行った。
論文 参考訳(メタデータ) (2022-05-03T07:54:56Z) - OptABC: an Optimal Hyperparameter Tuning Approach for Machine Learning
Algorithms [1.6114012813668934]
OptABCは、ABCアルゴリズムがほぼ最適解へのより高速な収束を支援するために提案されている。
OptABCは、人工蜂コロニーアルゴリズム、K-Meansクラスタリング、greedyアルゴリズム、および反対ベースの学習戦略を統合している。
実験結果から,OptABCの有効性が文献の既存手法と比較された。
論文 参考訳(メタデータ) (2021-12-15T22:33:39Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
決定論的条件と決定論的条件の両方において、二段階最適化問題を解決するアルゴリズムのクラスについて検討する。
厳密な勾配の推定を補正するために、ウォームスタート戦略を利用する。
このフレームワークを用いることで、これらのアルゴリズムは勾配の偏りのない推定値にアクセス可能な手法の計算複雑性と一致することを示す。
論文 参考訳(メタデータ) (2021-11-29T15:10:09Z) - Particle Swarm Optimization: Fundamental Study and its Application to
Optimization and to Jetty Scheduling Problems [0.0]
従来の手法に関する進化的アルゴリズムの利点は、文献で大いに議論されている。
粒子群はそのような利点を共有しているが、計算コストの低減と実装の容易さが要求されるため、進化的アルゴリズムよりも優れている。
本論文は, それらのチューニングについて検討するものではなく, 従来の研究から汎用的な設定を抽出し, 様々な問題を最適化するために, 事実上同じアルゴリズムを用いている。
論文 参考訳(メタデータ) (2021-01-25T02:06:30Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Benchmarking Meta-heuristic Optimization [0.0]
多くのメタヒューリスティックアルゴリズムは非線形関数を解く際に非常に効率的である。
メタヒューリスティックアルゴリズムは、幅広い問題に適用できる問題に依存しない手法である。
論文 参考訳(メタデータ) (2020-07-27T12:25:31Z) - EOS: a Parallel, Self-Adaptive, Multi-Population Evolutionary Algorithm
for Constrained Global Optimization [68.8204255655161]
EOSは実数値変数の制約付きおよび制約なし問題に対する大域的最適化アルゴリズムである。
これはよく知られた微分進化(DE)アルゴリズムに多くの改良を加えている。
その結果、EOSisは、最先端の単一人口自己適応Dアルゴリズムと比較して高い性能を達成可能であることが証明された。
論文 参考訳(メタデータ) (2020-07-09T10:19:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。