論文の概要: Benchmarking Meta-heuristic Optimization
- arxiv url: http://arxiv.org/abs/2007.13476v1
- Date: Mon, 27 Jul 2020 12:25:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-06 08:11:51.557729
- Title: Benchmarking Meta-heuristic Optimization
- Title(参考訳): ベンチマークメタヒューリスティック最適化
- Authors: Mona Nasr, Omar Farouk, Ahmed Mohamedeen, Ali Elrafie, Marwan Bedeir
and Ali Khaled
- Abstract要約: 多くのメタヒューリスティックアルゴリズムは非線形関数を解く際に非常に効率的である。
メタヒューリスティックアルゴリズムは、幅広い問題に適用できる問題に依存しない手法である。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Solving an optimization task in any domain is a very challenging problem,
especially when dealing with nonlinear problems and non-convex functions. Many
meta-heuristic algorithms are very efficient when solving nonlinear functions.
A meta-heuristic algorithm is a problem-independent technique that can be
applied to a broad range of problems. In this experiment, some of the
evolutionary algorithms will be tested, evaluated, and compared with each
other. We will go through the Genetic Algorithm\, Differential Evolution,
Particle Swarm Optimization Algorithm, Grey Wolf Optimizer, and Simulated
Annealing. They will be evaluated against the performance from many points of
view like how the algorithm performs throughout generations and how the
algorithm's result is close to the optimal result. Other points of evaluation
are discussed in depth in later sections.
- Abstract(参考訳): 任意の領域における最適化タスクの解決は、特に非線形問題や非凸関数を扱う場合、非常に難しい問題である。
多くのメタヒューリスティックアルゴリズムは非線形関数を解く際に非常に効率的である。
メタヒューリスティックアルゴリズムは、幅広い問題に適用できる問題に依存しない手法である。
この実験では、いくつかの進化的アルゴリズムがテストされ、評価され、比較される。
我々は、遺伝的アルゴリズム\、微分進化、粒子群最適化アルゴリズム、Grey Wolf Optimizer、シミュレートされたアニーリングを経る。
アルゴリズムが世代を通してどのように機能するか、アルゴリズムの結果が最適な結果にどのように近いかなど、多くの観点から評価される。
その他の評価のポイントは後段のセクションで深く議論される。
関連論文リスト
- A Generalized Evolutionary Metaheuristic (GEM) Algorithm for Engineering Optimization [1.6589012298747952]
近年の大きなトレンドは、自然に着想を得たメタヒュースティックアルゴリズム(NIMA)の利用である。
文献には540以上のアルゴリズムがあり、異なるアルゴリズムの探索機構を理解するための統一的なフレームワークはない。
20以上の異なるアルゴリズムを統一する一般化された進化的メタヒューリスティックアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-07-02T09:55:15Z) - Performance Evaluation of Evolutionary Algorithms for Analog Integrated
Circuit Design Optimisation [0.0]
本稿では,アナログ回路の自動サイズ化手法について述べる。
探索空間を対象とする探索は粒子生成関数と補修バウンド関数を用いて実装されている。
アルゴリズムは、より良い最適解に収束するように調整され、修正される。
論文 参考訳(メタデータ) (2023-10-19T03:26:36Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Amortized Implicit Differentiation for Stochastic Bilevel Optimization [53.12363770169761]
決定論的条件と決定論的条件の両方において、二段階最適化問題を解決するアルゴリズムのクラスについて検討する。
厳密な勾配の推定を補正するために、ウォームスタート戦略を利用する。
このフレームワークを用いることで、これらのアルゴリズムは勾配の偏りのない推定値にアクセス可能な手法の計算複雑性と一致することを示す。
論文 参考訳(メタデータ) (2021-11-29T15:10:09Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
バイレベル最適化は多くの重要な機械学習アプリケーションに広く適用されている。
両レベル最適化のための2つの新しいアルゴリズムを提案する。
両アルゴリズムが$mathcalO(epsilon-1.5)$の複雑さを達成し,既存のアルゴリズムを桁違いに上回っていることを示す。
論文 参考訳(メタデータ) (2021-06-08T21:05:30Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
本稿では,線形モデルから信号整数を推定する古典整数最小二乗問題について検討する。
問題はNPハードであり、信号処理、バイオインフォマティクス、通信、機械学習といった様々な応用でしばしば発生する。
本稿では, 深いニューラルネットワークを用いて, 単純化されたメモリバウンドA*アルゴリズムの最適推定を推定し, HATSアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-01-07T08:00:02Z) - Optimizing Optimizers: Regret-optimal gradient descent algorithms [9.89901717499058]
我々は,後悔最適アルゴリズムの存在,一意性,一貫性について検討する。
制御問題に対する一階最適条件を提供することにより、後悔最適アルゴリズムはそれらの力学において特定の構造を満たす必要があることを示す。
それらを近似する高速な数値法を提案し,長期的後悔を直接最適化する最適化アルゴリズムを生成する。
論文 参考訳(メタデータ) (2020-12-31T19:13:53Z) - Recent Theoretical Advances in Non-Convex Optimization [56.88981258425256]
近年、深層ネットワークにおける非最適化アルゴリズムの解析やデータ問題への関心が高まっており、非最適化のための理論的最適化アルゴリズムの最近の結果の概要を概説する。
論文 参考訳(メタデータ) (2020-12-11T08:28:51Z) - Adaptive and Universal Algorithms for Variational Inequalities with
Optimal Convergence [29.189409618561964]
我々は単調演算子を用いた変分不等式の新しい適応アルゴリズムを開発した。
我々のアルゴリズムは未知の問題パラメータに自動的に適応する。
我々のアルゴリズムは普遍的であり、同時に最適な収束率を達成することを示す。
論文 参考訳(メタデータ) (2020-10-15T14:44:26Z) - Optimal and Practical Algorithms for Smooth and Strongly Convex
Decentralized Optimization [21.555331273873175]
ネットワークのノードにまたがるスムーズな凸関数の和を分散化最小化する作業について検討する。
本稿では,この分散最適化問題に対する2つの新しいアルゴリズムを提案し,複雑性を保証する。
論文 参考訳(メタデータ) (2020-06-21T11:23:20Z) - Adaptivity of Stochastic Gradient Methods for Nonconvex Optimization [71.03797261151605]
適応性は現代最適化理論において重要であるが、研究されていない性質である。
提案アルゴリズムは,PL目標に対して既存のアルゴリズムよりも優れた性能を保ちながら,PL目標に対して最適な収束性を実現することを実証した。
論文 参考訳(メタデータ) (2020-02-13T05:42:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。