論文の概要: Developing Machine-Learned Potentials for Coarse-Grained Molecular
Simulations: Challenges and Pitfalls
- arxiv url: http://arxiv.org/abs/2209.12948v1
- Date: Mon, 26 Sep 2022 18:32:37 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-28 16:44:58.024577
- Title: Developing Machine-Learned Potentials for Coarse-Grained Molecular
Simulations: Challenges and Pitfalls
- Title(参考訳): 粗粒分子シミュレーションのための機械学習電位の開発:挑戦と落とし穴
- Authors: Eleonora Ricci, George Giannakopoulos, Vangelis Karkaletsis, Doros N.
Theodorou, Niki Vergadou
- Abstract要約: 粗粒化(CG)は、原子分解能で達成できるものよりも大きな系とより長い時間スケールで分子特性を調べることができる。
近年,CG粒子相互作用の学習,すなわちCG力場の開発のために機械学習技術が提案されている。
この研究では、各CG粒子に作用する力は、連続的なフィルタ畳み込みによって構築されたSchNetという名前の局所環境の学習された表現と相関する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Coarse graining (CG) enables the investigation of molecular properties for
larger systems and at longer timescales than the ones attainable at the
atomistic resolution. Machine learning techniques have been recently proposed
to learn CG particle interactions, i.e. develop CG force fields. Graph
representations of molecules and supervised training of a graph convolutional
neural network architecture are used to learn the potential of mean force
through a force matching scheme. In this work, the force acting on each CG
particle is correlated to a learned representation of its local environment
that goes under the name of SchNet, constructed via continuous filter
convolutions. We explore the application of SchNet models to obtain a CG
potential for liquid benzene, investigating the effect of model architecture
and hyperparameters on the thermodynamic, dynamical, and structural properties
of the simulated CG systems, reporting and discussing challenges encountered
and future directions envisioned.
- Abstract(参考訳): 粗粒化(CG)は、原子分解能で達成できるものよりも大きな系とより長い時間スケールで分子特性を調べることができる。
近年,CG粒子相互作用の学習,すなわちCG力場の開発のために機械学習技術が提案されている。
分子のグラフ表現とグラフ畳み込みニューラルネットワークアーキテクチャの教師付きトレーニングは、力マッチングスキームを通じて平均力のポテンシャルを学ぶために使用される。
本研究では, cg粒子に作用する力は, 連続フィルタ畳み込みによって構成されるシュネットという名で学習された局所環境の表現と相関する。
液体ベンゼンのcgポテンシャルを得るためのschnetモデルの適用について検討し、モデルアーキテクチャとハイパーパラメータがシミュレーションcgシステムの熱力学的、動的、構造的性質に及ぼす影響を調査し、遭遇した課題と今後の方向性を報告・議論する。
関連論文リスト
- Do Graph Neural Networks Work for High Entropy Alloys? [12.002942104379986]
高エントロピー合金(HEA)は化学的な長距離秩序を欠き、現在のグラフ表現の適用性を制限する。
本稿では,HEA特性予測のための正確かつ解釈可能なGNNであるLESets機械学習モデルを紹介する。
第四紀HEAの力学特性のモデル化におけるLESetsの精度を実証する。
論文 参考訳(メタデータ) (2024-08-29T08:20:02Z) - Thermodynamic Transferability in Coarse-Grained Force Fields using Graph Neural Networks [36.136619420474766]
グラフ畳み込みニューラルネットワークアーキテクチャを用いて、粗いきめ細かい力場のための高度に自動化されたトレーニングパイプラインを開発する。
この手法により, 高精度な力場が得られるが, これらの力場は様々な熱力学条件によりより伝達可能であることを示す。
論文 参考訳(メタデータ) (2024-06-17T21:44:05Z) - Statistically Optimal Force Aggregation for Coarse-Graining Molecular
Dynamics [55.41644538483948]
粗粒(CG)モデルは、原子論的な分子動力学で可能な以上の大きな分子複合体をシミュレートする可能性がある。
CG力場を学習するための広く使われている方法論は、全原子分子動力学からCG表現への力のマッピングと、平均してCG力場とマッチングするものである。
我々は、全原子力のCG表現へのマッピングには柔軟性があり、最もよく使われるマッピング手法は統計的に非効率的であり、全原子シミュレーションにおける制約の存在においても、潜在的に誤りであることを示した。
論文 参考訳(メタデータ) (2023-02-14T14:35:39Z) - Two for One: Diffusion Models and Force Fields for Coarse-Grained
Molecular Dynamics [15.660348943139711]
我々は、スコアベース生成モデル、力場、分子動力学の接続を利用して、トレーニング中に力入力を必要とせずにCG力場を学習する。
従来よりも大幅に簡易化されたトレーニングセットアップを持つ一方で,本手法がいくつかの小~中規模のタンパク質シミュレーションの性能向上につながることを実証した。
論文 参考訳(メタデータ) (2023-02-01T17:09:46Z) - ViSNet: an equivariant geometry-enhanced graph neural network with
vector-scalar interactive message passing for molecules [69.05950120497221]
本稿では、幾何学的特徴をエレガントに抽出し、分子構造を効率的にモデル化する同変幾何拡張グラフニューラルネットワークViSNetを提案する。
提案するViSNetは,MD17,MD17,MD22を含む複数のMDベンチマークにおける最先端の手法よりも優れ,QM9およびMolecule3Dデータセット上での優れた化学的特性予測を実現する。
論文 参考訳(メタデータ) (2022-10-29T07:12:46Z) - Geometric Knowledge Distillation: Topology Compression for Graph Neural
Networks [80.8446673089281]
グラフトポロジ情報をグラフニューラルネットワーク(GNN)に符号化することを目的とした知識伝達の新しいパラダイムについて検討する。
本稿では,GNNのアーキテクチャに関する基礎となる多様体の幾何学的性質をカプセル化するためのニューラルヒートカーネル(NHK)を提案する。
基本的な原理的解法は、NHKを幾何学的知識蒸留(Geometric Knowledge Distillation)と呼ばれる教師モデルと学生モデルに合わせることで導かれる。
論文 参考訳(メタデータ) (2022-10-24T08:01:58Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
分子グラフからの分子の3Dコンホメーラーアンサンブルの予測は、化学情報学と薬物発見の領域において重要な役割を担っている。
既存の生成モデルは、重要な分子幾何学的要素のモデリングの欠如を含むいくつかの欠点がある。
エンド・ツー・エンド、非自己回帰、SE(3)不変の機械学習手法であるGeoMolを提案し、3Dコンバータを生成する。
論文 参考訳(メタデータ) (2021-06-08T14:17:59Z) - Learning Neural Generative Dynamics for Molecular Conformation
Generation [89.03173504444415]
分子グラフから分子コンフォメーション(つまり3d構造)を生成する方法を検討した。
分子グラフから有効かつ多様なコンフォーメーションを生成する新しい確率論的枠組みを提案する。
論文 参考訳(メタデータ) (2021-02-20T03:17:58Z) - Coarse Graining Molecular Dynamics with Graph Neural Networks [3.0279361008741827]
本稿では,粗大な力場の機械学習のためのハイブリッドアーキテクチャを導入し,サブネットワークを介してそれぞれの特徴を学習する。
この枠組みは, 生体分子系における熱力学の再現に有効であることを示す。
論文 参考訳(メタデータ) (2020-07-22T13:20:08Z) - Learning to Simulate Complex Physics with Graph Networks [68.43901833812448]
本稿では,機械学習のフレームワークとモデルの実装について紹介する。
グラフネットワーク・ベース・シミュレータ(GNS)と呼ばれる我々のフレームワークは、グラフ内のノードとして表現された粒子で物理系の状態を表現し、学習されたメッセージパスによって動的を計算します。
我々のモデルは,訓練中に数千の粒子による1段階の予測から,異なる初期条件,数千の時間ステップ,少なくとも1桁以上の粒子をテスト時に一般化できることを示す。
論文 参考訳(メタデータ) (2020-02-21T16:44:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。