論文の概要: Statistically Optimal Force Aggregation for Coarse-Graining Molecular
Dynamics
- arxiv url: http://arxiv.org/abs/2302.07071v1
- Date: Tue, 14 Feb 2023 14:35:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-15 15:17:05.575355
- Title: Statistically Optimal Force Aggregation for Coarse-Graining Molecular
Dynamics
- Title(参考訳): 粗粒分子動力学のための統計的最適力凝集
- Authors: Andreas Kr\"amer, Aleksander P. Durumeric, Nicholas E. Charron, Yaoyi
Chen, Cecilia Clementi and Frank No\'e
- Abstract要約: 粗粒(CG)モデルは、原子論的な分子動力学で可能な以上の大きな分子複合体をシミュレートする可能性がある。
CG力場を学習するための広く使われている方法論は、全原子分子動力学からCG表現への力のマッピングと、平均してCG力場とマッチングするものである。
我々は、全原子力のCG表現へのマッピングには柔軟性があり、最もよく使われるマッピング手法は統計的に非効率的であり、全原子シミュレーションにおける制約の存在においても、潜在的に誤りであることを示した。
- 参考スコア(独自算出の注目度): 55.41644538483948
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine-learned coarse-grained (CG) models have the potential for simulating
large molecular complexes beyond what is possible with atomistic molecular
dynamics. However, training accurate CG models remains a challenge. A widely
used methodology for learning CG force-fields maps forces from all-atom
molecular dynamics to the CG representation and matches them with a CG
force-field on average. We show that there is flexibility in how to map
all-atom forces to the CG representation, and that the most commonly used
mapping methods are statistically inefficient and potentially even incorrect in
the presence of constraints in the all-atom simulation. We define an
optimization statement for force mappings and demonstrate that substantially
improved CG force-fields can be learned from the same simulation data when
using optimized force maps. The method is demonstrated on the miniproteins
Chignolin and Tryptophan Cage and published as open-source code.
- Abstract(参考訳): 機械学習粗粒モデル(CG)は、原子論的な分子動力学で可能な以上の大きな分子複合体をシミュレートする可能性がある。
しかし、正確なCGモデルのトレーニングは依然として課題である。
CG力場を学習するための広く使われている手法は、全原子分子動力学からCG表現への力のマッピングと、平均してCG力場とのマッチングである。
我々は、全原子力のCG表現へのマッピングには柔軟性があり、最もよく使われるマッピング手法は統計的に非効率的であり、全原子シミュレーションにおける制約の存在においても、潜在的に誤りであることを示した。
我々は、力マッピングのための最適化文を定義し、最適化力マップを用いて、同じシミュレーションデータからCG力場を大幅に改善できることを実証する。
この方法はチグノリンおよびトリプトファンケージのミニタンパク質上で実証され、オープンソースコードとして公開された。
関連論文リスト
- Navigating protein landscapes with a machine-learned transferable
coarse-grained model [29.252004942896875]
同様の予測性能を持つ粗粒度(CG)モデルは、長年にわたる課題である。
ケミカルトランスポータビリティを持つボトムアップCG力場を開発し,新しい配列の分子動力学に利用することができる。
本モデルでは, 折り畳み構造, 中間体, メタスタブル折り畳み型および折り畳み型流域, 内在的に不規則なタンパク質のゆらぎの予測に成功している。
論文 参考訳(メタデータ) (2023-10-27T17:10:23Z) - Towards Predicting Equilibrium Distributions for Molecular Systems with
Deep Learning [60.02391969049972]
本稿では,分子系の平衡分布を予測するために,分散グラフマー(DiG)と呼ばれる新しいディープラーニングフレームワークを導入する。
DiGはディープニューラルネットワークを用いて分子系の記述子に条件付き平衡分布に単純な分布を変換する。
論文 参考訳(メタデータ) (2023-06-08T17:12:08Z) - Two for One: Diffusion Models and Force Fields for Coarse-Grained
Molecular Dynamics [15.660348943139711]
我々は、スコアベース生成モデル、力場、分子動力学の接続を利用して、トレーニング中に力入力を必要とせずにCG力場を学習する。
従来よりも大幅に簡易化されたトレーニングセットアップを持つ一方で,本手法がいくつかの小~中規模のタンパク質シミュレーションの性能向上につながることを実証した。
論文 参考訳(メタデータ) (2023-02-01T17:09:46Z) - MolCPT: Molecule Continuous Prompt Tuning to Generalize Molecular
Representation Learning [77.31492888819935]
分子表現学習のための「プリトレイン,プロンプト,ファインチューン」という新しいパラダイム,分子連続プロンプトチューニング(MolCPT)を提案する。
MolCPTは、事前訓練されたモデルを使用して、スタンドアロンの入力を表現的なプロンプトに投影するモチーフプロンプト関数を定義する。
いくつかのベンチマークデータセットの実験により、MollCPTは分子特性予測のために学習済みのGNNを効率的に一般化することが示された。
論文 参考訳(メタデータ) (2022-12-20T19:32:30Z) - Developing Machine-Learned Potentials for Coarse-Grained Molecular
Simulations: Challenges and Pitfalls [0.0]
粗粒化(CG)は、原子分解能で達成できるものよりも大きな系とより長い時間スケールで分子特性を調べることができる。
近年,CG粒子相互作用の学習,すなわちCG力場の開発のために機械学習技術が提案されている。
この研究では、各CG粒子に作用する力は、連続的なフィルタ畳み込みによって構築されたSchNetという名前の局所環境の学習された表現と相関する。
論文 参考訳(メタデータ) (2022-09-26T18:32:37Z) - Force-matching Coarse-Graining without Forces [0.0]
全原子データからCG力場を学習することは、主に力マッチングと相対エントロピー最小化に依存している。
本稿では,力マッチングと相対エントロピー最小化の利点を組み合わせたCG力場の新しいトレーニング手法であるEmphflow-matchingを提案する。
論文 参考訳(メタデータ) (2022-03-21T17:46:35Z) - Chemical-Reaction-Aware Molecule Representation Learning [88.79052749877334]
本稿では,化学反応を用いて分子表現の学習を支援することを提案する。
本手法は,1) 埋め込み空間を適切に整理し, 2) 分子埋め込みの一般化能力を向上させるために有効であることが証明された。
実験結果から,本手法は様々なダウンストリームタスクにおける最先端性能を実現することが示された。
論文 参考訳(メタデータ) (2021-09-21T00:08:43Z) - GeoMol: Torsional Geometric Generation of Molecular 3D Conformer
Ensembles [60.12186997181117]
分子グラフからの分子の3Dコンホメーラーアンサンブルの予測は、化学情報学と薬物発見の領域において重要な役割を担っている。
既存の生成モデルは、重要な分子幾何学的要素のモデリングの欠如を含むいくつかの欠点がある。
エンド・ツー・エンド、非自己回帰、SE(3)不変の機械学習手法であるGeoMolを提案し、3Dコンバータを生成する。
論文 参考訳(メタデータ) (2021-06-08T14:17:59Z) - ForceNet: A Graph Neural Network for Large-Scale Quantum Calculations [86.41674945012369]
スケーラブルで表現力のあるグラフニューラルネットワークモデルであるForceNetを開発し、原子力を近似します。
提案したForceNetは、最先端の物理ベースのGNNよりも正確に原子力を予測することができる。
論文 参考訳(メタデータ) (2021-03-02T03:09:06Z) - Ensemble Learning of Coarse-Grained Molecular Dynamics Force Fields with
a Kernel Approach [2.562811344441631]
グラディエントドメイン機械学習(GDML)は、分子ポテンシャルと関連する力場を学習するための正確で効率的なアプローチである。
全原子シミュレーションデータから有効粗粒度(CG)モデルを学習するための応用を実証する。
アンサンブル学習と階層化サンプリングを用いて,データ効率とメモリ節約の代替案を提案する。
論文 参考訳(メタデータ) (2020-05-04T21:20:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。