論文の概要: Accelerating the Genetic Algorithm for Large-scale Traveling Salesman
Problems by Cooperative Coevolutionary Pointer Network with Reinforcement
Learning
- arxiv url: http://arxiv.org/abs/2209.13077v1
- Date: Tue, 27 Sep 2022 00:06:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-28 14:31:40.245652
- Title: Accelerating the Genetic Algorithm for Large-scale Traveling Salesman
Problems by Cooperative Coevolutionary Pointer Network with Reinforcement
Learning
- Title(参考訳): 強化学習を用いた協調共進化ポインターネットワークによる大規模セールスマン問題の遺伝的アルゴリズムの高速化
- Authors: Rui Zhong and Enzhi Zhang and Masaharu Munetomo
- Abstract要約: CCPNRL-GAという大規模トラベリングセールスマン問題(LSTSP)を解決するための2段階最適化手法を提案する。
まず、エリートとしての優れた個人への参加は、最適化の収束を加速できるという仮説を立てる。
提案手法を10 LSTSPで検証し,従来のEAと比較した。
- 参考スコア(独自算出の注目度): 2.7716102039510564
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we propose a two-stage optimization strategy for solving the
Large-scale Traveling Salesman Problems (LSTSPs) named CCPNRL-GA. First, we
hypothesize that the participation of a well-performed individual as an elite
can accelerate the convergence of optimization. Based on this hypothesis, in
the first stage, we cluster the cities and decompose the LSTSPs into multiple
subcomponents, and each subcomponent is optimized with a reusable Pointer
Network (PtrNet). After subcomponents optimization, we combine all sub-tours to
form a valid solution, this solution joins the second stage of optimization
with GA. We validate the performance of our proposal on 10 LSTSPs and compare
it with traditional EAs. Experimental results show that the participation of an
elite individual can greatly accelerate the optimization of LSTSPs, and our
proposal has broad prospects for dealing with LSTSPs.
- Abstract(参考訳): 本稿では,CCPNRL-GAという大規模トラベリングセールスマン問題(LSTSP)を解決するための2段階最適化手法を提案する。
まず、エリートとしての優れた個人参加は、最適化の収束を加速できるという仮説を立てる。
この仮説に基づいて、第1段階で都市をクラスタ化し、LSTSPを複数のサブコンポーネントに分解し、各サブコンポーネントを再利用可能なポインタネットワーク(PtrNet)で最適化する。
サブコンポーネント最適化の後、全てのサブツールを組み合わせて有効な解を作り、この解は最適化の第2段階のGAと結合する。
提案手法を10 LSTSPで検証し,従来のEAと比較した。
実験結果から,エリート個体の参加はLSTSPの最適化を大幅に加速する可能性が示唆された。
関連論文リスト
- Ant Colony Sampling with GFlowNets for Combinatorial Optimization [68.84985459701007]
Generative Flow Ant Colony Sampler (GFACS)は、階層的に償却推論と並列探索を組み合わせた新しいメタヒューリスティック手法である。
提案手法はまず,生成フローネットワーク(GFlowNets)を利用して,ソリューション空間上の複数モーダル事前分布を記憶する。
論文 参考訳(メタデータ) (2024-03-11T16:26:06Z) - Controllable Prompt Tuning For Balancing Group Distributional Robustness [53.336515056479705]
グループ間で優れたパフォーマンスを実現するための最適化スキームを導入し、それらの性能を著しく犠牲にすることなく、全員に良い解決策を見出す。
本稿では,制御可能なプロンプトチューニング(CPT)を提案する。
突発的相関ベンチマークでは, 変換器と非変換器の両アーキテクチャ, および非モーダルおよびマルチモーダルデータにまたがって, 最先端の結果が得られた。
論文 参考訳(メタデータ) (2024-03-05T06:23:55Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Constrained Bayesian Optimization Under Partial Observations: Balanced
Improvements and Provable Convergence [6.461785985849886]
我々は、制約付きベイズ最適化の枠組みの下で、高価なPOCOPの効率的かつ証明可能な手法を設計する。
本稿では,最適化時の平衡探索を取り入れた取得関数の設計を改良した。
部分的に観測可能な制約に対する代理モデルとして異なる確率を埋め込んだガウス過程を提案する。
論文 参考訳(メタデータ) (2023-12-06T01:00:07Z) - Bidirectional Looking with A Novel Double Exponential Moving Average to
Adaptive and Non-adaptive Momentum Optimizers [109.52244418498974]
我々は,新しいtextscAdmeta(textbfADouble指数textbfMov averagtextbfE textbfAdaptiveおよび非適応運動量)フレームワークを提案する。
我々は、textscAdmetaR と textscAdmetaS の2つの実装を提供し、前者は RAdam を、後者は SGDM をベースとしています。
論文 参考訳(メタデータ) (2023-07-02T18:16:06Z) - Accelerating the Evolutionary Algorithms by Gaussian Process Regression
with $\epsilon$-greedy acquisition function [2.7716102039510564]
本稿では,最適化の収束を早めるために,エリート個人を推定する新しい手法を提案する。
我々の提案には、エリート個人を推定し、最適化の収束を加速する幅広い見通しがある。
論文 参考訳(メタデータ) (2022-10-13T07:56:47Z) - LinEasyBO: Scalable Bayesian Optimization Approach for Analog Circuit
Synthesis via One-Dimensional Subspaces [11.64233949999656]
アナログ回路合成のための1次元部分空間による高速でロバストなベイズ最適化手法を提案する。
提案アルゴリズムは,バッチサイズが15のとき,LP-EIおよびREMBOpBOと比較して最大9倍,38倍の最適化手順を高速化できる。
論文 参考訳(メタデータ) (2021-09-01T21:25:25Z) - An Efficient Batch Constrained Bayesian Optimization Approach for Analog
Circuit Synthesis via Multi-objective Acquisition Ensemble [11.64233949999656]
MACE(Multi-objective Acquisition Function Ensemble)を用いた並列化可能なベイズ最適化アルゴリズムを提案する。
提案アルゴリズムは,バッチサイズが15のときの非制約最適化問題に対する微分進化(DE)と比較して,シミュレーション全体の時間を最大74倍削減することができる。
制約付き最適化問題に対して,提案アルゴリズムは,バッチサイズが15の場合に,重み付き改善に基づくベイズ最適化(WEIBO)アプローチと比較して最大15倍の高速化を実現することができる。
論文 参考訳(メタデータ) (2021-06-28T13:21:28Z) - Exploration in two-stage recommender systems [79.50534282841618]
2段階のレコメンデータシステムは、スケーラビリティと保守性のために業界で広く採用されている。
このセットアップの鍵となる課題は、各ステージの最適性能が最適なグローバルパフォーマンスを暗示していないことである。
そこで本研究では,ランクとノミネーター間の探索戦略を同期させる手法を提案する。
論文 参考訳(メタデータ) (2020-09-01T16:52:51Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
セキュリティに制約のある最適電力フロー(SCOPF)は、電力システムの基本である。
SCOPF問題におけるAPRのモデル化は、複雑な大規模混合整数プログラムをもたらす。
本稿では,ディープラーニングとロバスト最適化を組み合わせた新しい手法を提案する。
論文 参考訳(メタデータ) (2020-07-14T12:38:21Z) - Generalized Self-Adapting Particle Swarm Optimization algorithm with
archive of samples [0.0]
本稿では,M-GAPSOと呼ばれるアルゴリズムの新バージョンを紹介する。
GAPSOの当初の定式化と比較すると、グローバル再起動管理スキーム、R-Treeベースインデックス内のサンプル収集、グローバルな粒子性能に基づくサンプリング動作の適応、ローカル検索への具体的なアプローチの4つの特徴がある。
論文 参考訳(メタデータ) (2020-02-28T00:03:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。