論文の概要: Constrained Bayesian Optimization Under Partial Observations: Balanced
Improvements and Provable Convergence
- arxiv url: http://arxiv.org/abs/2312.03212v2
- Date: Sat, 23 Dec 2023 01:35:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-27 21:08:00.436353
- Title: Constrained Bayesian Optimization Under Partial Observations: Balanced
Improvements and Provable Convergence
- Title(参考訳): 部分観測による制約付きベイズ最適化:バランス改善と予測収束
- Authors: Shengbo Wang and Ke Li
- Abstract要約: 我々は、制約付きベイズ最適化の枠組みの下で、高価なPOCOPの効率的かつ証明可能な手法を設計する。
本稿では,最適化時の平衡探索を取り入れた取得関数の設計を改良した。
部分的に観測可能な制約に対する代理モデルとして異なる確率を埋め込んだガウス過程を提案する。
- 参考スコア(独自算出の注目度): 6.461785985849886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The partially observable constrained optimization problems (POCOPs) impede
data-driven optimization techniques since an infeasible solution of POCOPs can
provide little information about the objective as well as the constraints. We
endeavor to design an efficient and provable method for expensive POCOPs under
the framework of constrained Bayesian optimization. Our method consists of two
key components. Firstly, we present an improved design of the acquisition
functions that introduces balanced exploration during optimization. We
rigorously study the convergence properties of this design to demonstrate its
effectiveness. Secondly, we propose a Gaussian process embedding different
likelihoods as the surrogate model for a partially observable constraint. This
model leads to a more accurate representation of the feasible regions compared
to traditional classification-based models. Our proposed method is empirically
studied on both synthetic and real-world problems. The results demonstrate the
competitiveness of our method for solving POCOPs.
- Abstract(参考訳): 部分的に観測可能な制約付き最適化問題(POCOP)は、POCOPの実用不可能なソリューションが目的と制約に関する情報をほとんど提供できないため、データ駆動最適化技術を妨げる。
我々は、制約付きベイズ最適化の枠組みの下で、高価なPOCOPの効率的かつ証明可能な手法を設計する。
本手法は2つの主成分からなる。
まず,最適化時のバランスの取れた探索を取り入れた取得関数の設計を改良した。
本設計の収束特性を厳密に研究し,その有効性を実証する。
次に,部分可観測制約に対するサロゲートモデルとして,異なる可能性を埋め込むガウス過程を提案する。
このモデルは、従来の分類に基づくモデルと比較して、実現可能な領域のより正確な表現につながる。
提案手法は合成問題と実世界問題の両方について実験的に研究されている。
以上の結果から,POCOPの解法における競合性を実証した。
関連論文リスト
- Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
機械学習(ML)モデルは、制約付き最適化ソルバをエミュレートするために訓練される。
本稿では,MLモデルを用いて2つの解推定を直接予測する手法を提案する。
これにより、双対目的が損失関数であるエンドツーエンドのトレーニングスキームと、双対上昇法をエミュレートした原始的実現可能性への解推定を可能にする。
論文 参考訳(メタデータ) (2024-03-06T04:43:22Z) - Optimizing $CO_{2}$ Capture in Pressure Swing Adsorption Units: A Deep
Neural Network Approach with Optimality Evaluation and Operating Maps for
Decision-Making [0.0]
本研究は,二酸化炭素捕捉用加圧湿式吸着ユニットの高機能化に焦点をあてる。
2つのディープニューラルネットワーク(DNN)モデルからなるマルチインプット・シングルアウトプット(MISO)フレームワークを開発し,実装した。
このアプローチは、実行可能な運用領域(FOR)を明確にし、最適な意思決定シナリオのスペクトルを強調した。
論文 参考訳(メタデータ) (2023-12-06T19:43:37Z) - Learning Unnormalized Statistical Models via Compositional Optimization [73.30514599338407]
実データと人工雑音のロジスティックな損失として目的を定式化することにより, ノイズコントラスト推定(NCE)を提案する。
本稿では,非正規化モデルの負の対数類似度を最適化するための直接的アプローチについて検討する。
論文 参考訳(メタデータ) (2023-06-13T01:18:16Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - No-Regret Constrained Bayesian Optimization of Noisy and Expensive
Hybrid Models using Differentiable Quantile Function Approximations [0.0]
Constrained Upper Quantile Bound (CUQB) は、制約近似を避けるための概念的に単純で決定論的アプローチである。
CUQBは制約のある場合と制約のない場合の両方において従来のベイズ最適化よりも著しく優れることを示す。
論文 参考訳(メタデータ) (2023-05-05T19:57:36Z) - Linearization Algorithms for Fully Composite Optimization [61.20539085730636]
本稿では,完全合成最適化問題を凸コンパクト集合で解くための一階アルゴリズムについて検討する。
微分可能および非微分可能を別々に扱い、滑らかな部分のみを線形化することで目的の構造を利用する。
論文 参考訳(メタデータ) (2023-02-24T18:41:48Z) - Differentiable Multi-Target Causal Bayesian Experimental Design [43.76697029708785]
本稿では,ベイズ最適設計問題に対する勾配に基づくアプローチを導入し,バッチ環境で因果モデルを学習する。
既存の手法は、一連の実験を構築するためにグリーディ近似に依存している。
そこで本稿では,最適介入対象ペアの集合を取得するための,概念的にシンプルな勾配に基づく最適化手法を提案する。
論文 参考訳(メタデータ) (2023-02-21T11:32:59Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
Manifold Interpolation [6.560512252982714]
バッチ化されたデータ駆動型進化的多目的最適化を実現するためのフレームワークを提案する。
オフザシェルフ進化的多目的最適化アルゴリズムがプラグイン方式で適用できるのは、非常に一般的である。
提案するフレームワークは, より高速な収束と各種PF形状に対する強いレジリエンスを特徴とする。
論文 参考訳(メタデータ) (2021-09-12T23:54:26Z) - Bayesian Optimisation for Constrained Problems [0.0]
本稿では,制約を扱える知恵グラディエント獲得関数の新たな変種を提案する。
我々は、このアルゴリズムを、他の4つの最先端制約されたベイズ最適化アルゴリズムと比較し、その優れた性能を実証する。
論文 参考訳(メタデータ) (2021-05-27T15:43:09Z) - Optimal Bayesian experimental design for subsurface flow problems [77.34726150561087]
本稿では,設計ユーティリティ機能のためのカオス拡張サロゲートモデル(PCE)の開発のための新しいアプローチを提案する。
この手法により,対象関数に対する適切な品質応答面の導出が可能となり,計算予算は複数の単点評価に匹敵する。
論文 参考訳(メタデータ) (2020-08-10T09:42:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。