論文の概要: PCB-RandNet: Rethinking Random Sampling for LIDAR Semantic Segmentation
in Autonomous Driving Scene
- arxiv url: http://arxiv.org/abs/2209.13797v3
- Date: Wed, 6 Mar 2024 02:09:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-07 11:55:27.309245
- Title: PCB-RandNet: Rethinking Random Sampling for LIDAR Semantic Segmentation
in Autonomous Driving Scene
- Title(参考訳): PCB-RandNet:自律走行シーンにおけるLIDARセマンティックセグメンテーションのためのランダムサンプリングの再考
- Authors: XianFeng Han, Huixian Cheng, Hang Jiang, Dehong He, Guoqiang Xiao
- Abstract要約: 大規模LiDAR点雲のセマンティックセグメンテーションのための新しいポーラシリンダバランスランダムサンプリング法を提案する。
さらに,セグメント化性能を向上し,異なるサンプリング法下でのモデルのばらつきを低減するため,サンプリング一貫性損失が導入された。
提案手法は,SemanticKITTIベンチマークとSemanticPOSSベンチマークの両方で優れた性能を示し,それぞれ2.8%と4.0%の改善を実現している。
- 参考スコア(独自算出の注目度): 15.516687293651795
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fast and efficient semantic segmentation of large-scale LiDAR point clouds is
a fundamental problem in autonomous driving. To achieve this goal, the existing
point-based methods mainly choose to adopt Random Sampling strategy to process
large-scale point clouds. However, our quantative and qualitative studies have
found that Random Sampling may be less suitable for the autonomous driving
scenario, since the LiDAR points follow an uneven or even long-tailed
distribution across the space, which prevents the model from capturing
sufficient information from points in different distance ranges and reduces the
model's learning capability. To alleviate this problem, we propose a new Polar
Cylinder Balanced Random Sampling method that enables the downsampled point
clouds to maintain a more balanced distribution and improve the segmentation
performance under different spatial distributions. In addition, a sampling
consistency loss is introduced to further improve the segmentation performance
and reduce the model's variance under different sampling methods. Extensive
experiments confirm that our approach produces excellent performance on both
SemanticKITTI and SemanticPOSS benchmarks, achieving a 2.8% and 4.0%
improvement, respectively. The source code is available at
https://github.com/huixiancheng/PCB-RandNet.
- Abstract(参考訳): 大規模lidarポイントクラウドの高速かつ効率的なセマンティクスセグメンテーションは、自動運転における根本的な問題である。
この目標を達成するために、既存のポイントベースのメソッドは主に大規模なポイントクラウドを処理するためにランダムサンプリング戦略を採用する。
しかし,我々の定量的・定性的な研究では,lidar点が空間全体にわたって不均一あるいは長尾の分布に従うため,ランダムサンプリングは自律運転のシナリオには適さない可能性があり,距離範囲の異なる点から十分な情報を取得できないため,モデルの学習能力が低下する。
この問題を軽減するために、よりバランスのとれた分布を維持し、異なる空間分布下でのセグメンテーション性能を向上させることができる新しい極柱平衡ランダムサンプリング法を提案する。
さらに,セグメント化性能を向上し,異なるサンプリング手法によるモデルの分散を低減するため,サンプリング一貫性損失が導入された。
実験の結果,SemanticKITTIとSemanticPOSSのベンチマークでは,それぞれ2.8%,4.0%の改善が得られた。
ソースコードはhttps://github.com/huixiancheng/PCB-RandNetで入手できる。
関連論文リスト
- Test-Time Adaptation in Point Clouds: Leveraging Sampling Variation with Weight Averaging [17.74824534094739]
テスト時間適応(TTA)は、ソースデータにアクセスせずに事前訓練されたモデルを適用することで、テスト中の分散シフトに対処する。
本稿では,3次元点雲分類のための新しいTTA手法を提案する。
論文 参考訳(メタデータ) (2024-11-02T02:59:25Z) - Improving Distribution Alignment with Diversity-based Sampling [0.0]
ドメインシフトは機械学習においてユビキタスであり、実際のデータにデプロイすると、モデルのパフォーマンスが大幅に低下する可能性がある。
本稿では,各サンプル小バッチの多様性を誘導することにより,これらの推定値を改善することを提案する。
同時にデータのバランスを保ち、勾配のばらつきを低減し、それによってモデルの一般化能力を高める。
論文 参考訳(メタデータ) (2024-10-05T17:26:03Z) - Enhancing Sampling Protocol for Robust Point Cloud Classification [7.6224558218559855]
実世界のデータは、現在のプロトコルにおける点雲の良性の仮定に反するセンサノイズなど、しばしば干渉に悩まされる。
1)キーポイント識別のためのダウンサンプリング,2)フレキシブルなサンプルサイズのためのリサンプリングの2つのコンポーネントからなるポイントクラウドサンプリングプロトコルであるポイントDRを提案する。
論文 参考訳(メタデータ) (2024-08-22T01:48:31Z) - Learning Sampling Distributions for Model Predictive Control [36.82905770866734]
モデル予測制御(MPC)に対するサンプリングに基づくアプローチは、MPCに対する現代のアプローチの基盤となっている。
我々は、学習された分布を最大限に活用できるように、潜在空間における全ての操作を実行することを提案する。
具体的には、学習問題を双方向の最適化として捉え、バックプロパゲーションスルータイムでコントローラをトレーニングする方法を示す。
論文 参考訳(メタデータ) (2022-12-05T20:35:36Z) - Adaptive Sketches for Robust Regression with Importance Sampling [64.75899469557272]
我々は、勾配降下(SGD)による頑健な回帰を解くためのデータ構造を導入する。
我々のアルゴリズムは、サブ線形空間を使用し、データに1回パスするだけで、SGDの$T$ステップを重要サンプリングで効果的に実行します。
論文 参考訳(メタデータ) (2022-07-16T03:09:30Z) - BIMS-PU: Bi-Directional and Multi-Scale Point Cloud Upsampling [60.257912103351394]
我々はBIMS-PUと呼ばれる新しいポイント・クラウド・アップサンプリング・パイプラインを開発した。
対象のサンプリング因子を小さな因子に分解することにより,アップ/ダウンサンプリング手順をいくつかのアップ/ダウンサンプリングサブステップに分解する。
提案手法は最先端手法よりも優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2022-06-25T13:13:37Z) - ScatterSample: Diversified Label Sampling for Data Efficient Graph
Neural Network Learning [22.278779277115234]
グラフニューラルネットワーク(GNN)トレーニングが高価であるいくつかのアプリケーションでは、新しいインスタンスのラベル付けが高価である。
データ効率のよいアクティブサンプリングフレームワークであるScatterSampleを開発し、アクティブな学習環境下でGNNを訓練する。
5つのデータセットに対する実験により、ScatterSampleは他のGNNのアクティブラーニングベースラインよりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2022-06-09T04:05:02Z) - Self-Supervised Arbitrary-Scale Point Clouds Upsampling via Implicit
Neural Representation [79.60988242843437]
そこで本研究では,自己監督型および倍率フレキシブルな点雲を同時にアップサンプリングする手法を提案する。
実験結果から, 自己教師あり学習に基づく手法は, 教師あり学習に基づく手法よりも, 競争力や性能が向上することが示された。
論文 参考訳(メタデータ) (2022-04-18T07:18:25Z) - Unrolling Particles: Unsupervised Learning of Sampling Distributions [102.72972137287728]
粒子フィルタリングは複素系の優れた非線形推定を計算するために用いられる。
粒子フィルタは様々なシナリオにおいて良好な推定値が得られることを示す。
論文 参考訳(メタデータ) (2021-10-06T16:58:34Z) - Learning Semantic Segmentation of Large-Scale Point Clouds with Random
Sampling [52.464516118826765]
我々はRandLA-Netを紹介した。RandLA-Netは、大規模ポイントクラウドのポイントごとの意味を推論する、効率的で軽量なニューラルネットワークアーキテクチャである。
我々のアプローチの鍵は、より複雑な点選択アプローチではなく、ランダムな点サンプリングを使用することである。
我々のRandLA-Netは、既存のアプローチよりも最大200倍高速な1回のパスで100万ポイントを処理できます。
論文 参考訳(メタデータ) (2021-07-06T05:08:34Z) - SPU-Net: Self-Supervised Point Cloud Upsampling by Coarse-to-Fine
Reconstruction with Self-Projection Optimization [52.20602782690776]
実際のスキャンされたスパースデータからトレーニング用の大規模なペアリングスパーススキャンポイントセットを得るのは高価で面倒です。
本研究では,SPU-Net と呼ばれる自己監視型点群アップサンプリングネットワークを提案する。
本研究では,合成データと実データの両方について様々な実験を行い,最先端の教師付き手法と同等の性能が得られることを示す。
論文 参考訳(メタデータ) (2020-12-08T14:14:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。