論文の概要: Test-Time Adaptation in Point Clouds: Leveraging Sampling Variation with Weight Averaging
- arxiv url: http://arxiv.org/abs/2411.01116v1
- Date: Sat, 02 Nov 2024 02:59:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-05 14:40:06.788614
- Title: Test-Time Adaptation in Point Clouds: Leveraging Sampling Variation with Weight Averaging
- Title(参考訳): 点雲におけるテスト時間適応: 平均化によるサンプリング変動の活用
- Authors: Ali Bahri, Moslem Yazdanpanah, Mehrdad Noori, Sahar Dastani Oghani, Milad Cheraghalikhani, David Osowiech, Farzad Beizaee, Gustavo adolfo. vargas-hakim, Ismail Ben Ayed, Christian Desrosiers,
- Abstract要約: テスト時間適応(TTA)は、ソースデータにアクセスせずに事前訓練されたモデルを適用することで、テスト中の分散シフトに対処する。
本稿では,3次元点雲分類のための新しいTTA手法を提案する。
- 参考スコア(独自算出の注目度): 17.74824534094739
- License:
- Abstract: Test-Time Adaptation (TTA) addresses distribution shifts during testing by adapting a pretrained model without access to source data. In this work, we propose a novel TTA approach for 3D point cloud classification, combining sampling variation with weight averaging. Our method leverages Farthest Point Sampling (FPS) and K-Nearest Neighbors (KNN) to create multiple point cloud representations, adapting the model for each variation using the TENT algorithm. The final model parameters are obtained by averaging the adapted weights, leading to improved robustness against distribution shifts. Extensive experiments on ModelNet40-C, ShapeNet-C, and ScanObjectNN-C datasets, with different backbones (Point-MAE, PointNet, DGCNN), demonstrate that our approach consistently outperforms existing methods while maintaining minimal resource overhead. The proposed method effectively enhances model generalization and stability in challenging real-world conditions.
- Abstract(参考訳): テスト時間適応(TTA)は、ソースデータにアクセスせずに事前訓練されたモデルを適用することで、テスト中の分散シフトに対処する。
本研究では,3次元点雲分類のための新しいTTA手法を提案する。
提案手法はFarthest Point Sampling (FPS) とK-Nearest Neighbors (KNN) を利用して複数点のクラウド表現を生成し,TENTアルゴリズムを用いて各変動に対してモデルを適用する。
最終モデルパラメータは、適応重みを平均化し、分散シフトに対するロバスト性を改善する。
ModelNet40-C、ShapeNet-C、ScanObjectNN-Cデータセットに対する大規模な実験は、異なるバックボーン(Point-MAE、PointNet、DGCNN)で、我々のアプローチがリソースオーバーヘッドを最小限に抑えながら既存のメソッドを一貫して上回ることを示した。
提案手法は,挑戦的な実環境下でのモデル一般化と安定性を効果的に向上させる。
関連論文リスト
- Test-Time Adaptation of 3D Point Clouds via Denoising Diffusion Models [19.795578581043745]
3Dポイントクラウドのテスト時間適応は、実世界のシナリオにおけるトレーニングとテストサンプルの相違を緩和するために不可欠である。
本稿では,3D Denoising Diffusion Test-Time Adaptationの略である3DD-TTAと呼ばれる新しい3Dテスト時間適応法を提案する。
論文 参考訳(メタデータ) (2024-11-21T00:04:38Z) - Test-time adaptation for geospatial point cloud semantic segmentation with distinct domain shifts [6.80671668491958]
テスト時間適応(TTA)は、ソースデータへのアクセスや追加のトレーニングなしに、推論段階でラベル付けされていないデータに事前訓練されたモデルの直接適応を可能にする。
本稿では,3つの領域シフトパラダイムを提案する。光グラムから空気中LiDAR,空気中LiDAR,合成-移動レーザー走査である。
実験の結果,分類精度は最大20%mIoUに向上し,他の手法よりも優れていた。
論文 参考訳(メタデータ) (2024-07-08T15:40:28Z) - Test-Time Model Adaptation with Only Forward Passes [68.11784295706995]
テストタイム適応は、トレーニング済みのモデルを、潜在的に分布シフトのある未確認テストサンプルに適応させるのに有効であることが証明されている。
テスト時間フォワード最適化適応法(FOA)を提案する。
FOAは量子化された8ビットのViTで動作し、32ビットのViTで勾配ベースのTENTより優れ、ImageNet-Cで最大24倍のメモリ削減を実現する。
論文 参考訳(メタデータ) (2024-04-02T05:34:33Z) - AR-TTA: A Simple Method for Real-World Continual Test-Time Adaptation [1.4530711901349282]
本稿では,自律運転のためのデータセット,すなわちCLAD-CとShiFTを用いたテスト時間適応手法の検証を提案する。
現在のテスト時間適応手法は、ドメインシフトの様々な程度を効果的に扱うのに苦労している。
モデル安定性を高めるために、小さなメモリバッファを組み込むことで、確立された自己学習フレームワークを強化する。
論文 参考訳(メタデータ) (2023-09-18T19:34:23Z) - Uncertainty Guided Adaptive Warping for Robust and Efficient Stereo
Matching [77.133400999703]
相関に基づくステレオマッチングは優れた性能を達成した。
固定モデルによる現在のメソッドは、さまざまなデータセットで均一に動作しない。
本稿では,ロバストなステレオマッチングのための相関を動的に計算する新しい視点を提案する。
論文 参考訳(メタデータ) (2023-07-26T09:47:37Z) - Faster Adaptive Federated Learning [84.38913517122619]
フェデレートラーニングは分散データの出現に伴って注目を集めている。
本稿では,クロスサイロFLにおけるモーメントに基づく分散低減手法に基づく適応アルゴリズム(FAFED)を提案する。
論文 参考訳(メタデータ) (2022-12-02T05:07:50Z) - PCB-RandNet: Rethinking Random Sampling for LIDAR Semantic Segmentation
in Autonomous Driving Scene [15.516687293651795]
大規模LiDAR点雲のセマンティックセグメンテーションのための新しいポーラシリンダバランスランダムサンプリング法を提案する。
さらに,セグメント化性能を向上し,異なるサンプリング法下でのモデルのばらつきを低減するため,サンプリング一貫性損失が導入された。
提案手法は,SemanticKITTIベンチマークとSemanticPOSSベンチマークの両方で優れた性能を示し,それぞれ2.8%と4.0%の改善を実現している。
論文 参考訳(メタデータ) (2022-09-28T02:59:36Z) - PointInst3D: Segmenting 3D Instances by Points [136.7261709896713]
本稿では,ポイント単位の予測方式で機能する,完全畳み込み型3Dポイントクラウドインスタンスセグメンテーション手法を提案する。
その成功の鍵は、各サンプルポイントに適切なターゲットを割り当てることにある。
提案手法はScanNetとS3DISのベンチマークで有望な結果が得られる。
論文 参考訳(メタデータ) (2022-04-25T02:41:46Z) - Efficient Test-Time Model Adaptation without Forgetting [60.36499845014649]
テストタイム適応は、トレーニングとテストデータの間の潜在的な分散シフトに取り組むことを目指している。
信頼性および非冗長なサンプルを同定するためのアクティブなサンプル選択基準を提案する。
また、重要なモデルパラメータを劇的な変化から制約するFisher regularizerを導入します。
論文 参考訳(メタデータ) (2022-04-06T06:39:40Z) - Deep Magnification-Flexible Upsampling over 3D Point Clouds [103.09504572409449]
本稿では,高密度点雲を生成するためのエンドツーエンド学習ベースのフレームワークを提案する。
まずこの問題を明示的に定式化し、重みと高次近似誤差を判定する。
そこで我々は,高次改良とともに,統一重みとソート重みを適応的に学習する軽量ニューラルネットワークを設計する。
論文 参考訳(メタデータ) (2020-11-25T14:00:18Z) - Point Transformer for Shape Classification and Retrieval of 3D and ALS
Roof PointClouds [3.3744638598036123]
本稿では,リッチポイントクラウド表現の導出を目的とした,完全注意モデルであるem Point Transformerを提案する。
モデルの形状分類と検索性能は,大規模都市データセット - RoofN3D と標準ベンチマークデータセット ModelNet40 で評価される。
提案手法は、RoofN3Dデータセットの他の最先端モデルよりも優れており、ModelNet40ベンチマークで競合する結果を与え、目に見えない点の破損に対して高い堅牢性を示す。
論文 参考訳(メタデータ) (2020-11-08T08:11:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。