Identifying Differential Equations to predict Blood Glucose using Sparse
Identification of Nonlinear Systems
- URL: http://arxiv.org/abs/2209.13852v1
- Date: Wed, 28 Sep 2022 06:11:23 GMT
- Title: Identifying Differential Equations to predict Blood Glucose using Sparse
Identification of Nonlinear Systems
- Authors: David J\"odicke, Daniel Parra, Gabriel Kronberger, Stephan Winkler
- Abstract summary: We study the possibility of modeling the blood glucose level of diabetic patients purely on the basis of measured data.
A combination of the influencing variables insulin and calories are used to find an interpretable model.
We show that it is possible to simulate the long-term blood glucose dynamics using differential equations and few, influencing variables.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Describing dynamic medical systems using machine learning is a challenging
topic with a wide range of applications. In this work, the possibility of
modeling the blood glucose level of diabetic patients purely on the basis of
measured data is described. A combination of the influencing variables insulin
and calories are used to find an interpretable model. The absorption speed of
external substances in the human body depends strongly on external influences,
which is why time-shifts are added for the influencing variables. The focus is
put on identifying the best timeshifts that provide robust models with good
prediction accuracy that are independent of other unknown external influences.
The modeling is based purely on the measured data using Sparse Identification
of Nonlinear Dynamics. A differential equation is determined which, starting
from an initial value, simulates blood glucose dynamics. By applying the best
model to test data, we can show that it is possible to simulate the long-term
blood glucose dynamics using differential equations and few, influencing
variables.
Related papers
- Interpretable Mechanistic Representations for Meal-level Glycemic
Control in the Wild [10.240619571788786]
We propose a hybrid variational autoencoder to learn interpretable representations of CGM and meal data.
Our method grounds the latent space to the inputs of a mechanistic differential equation, producing embeddings that reflect physiological quantities.
Our embeddings produce clusters that are up to 4x better than naive, expert, black-box, and pure mechanistic features.
arXiv Detail & Related papers (2023-12-06T08:36:23Z) - Individualized Dosing Dynamics via Neural Eigen Decomposition [51.62933814971523]
We introduce the Neural Eigen Differential Equation algorithm (NESDE)
NESDE provides individualized modeling, tunable generalization to new treatment policies, and fast, continuous, closed-form prediction.
We demonstrate the robustness of NESDE in both synthetic and real medical problems, and use the learned dynamics to publish simulated medical gym environments.
arXiv Detail & Related papers (2023-06-24T17:01:51Z) - Learning Absorption Rates in Glucose-Insulin Dynamics from Meal
Covariates [28.39179475412449]
A meal's macronutritional content has nuanced effects on the absorption profile, which is difficult to model mechanistically.
We use a neural network to predict an individual's glucose absorption rate.
arXiv Detail & Related papers (2023-04-27T16:03:41Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
We propose a probabilistic model called ME-NODE to incorporate (fixed + random) mixed effects for analyzing panel data.
We show that our model can be derived using smooth approximations of SDEs provided by the Wong-Zakai theorem.
We then derive Evidence Based Lower Bounds for ME-NODE, and develop (efficient) training algorithms.
arXiv Detail & Related papers (2022-02-18T22:41:51Z) - Continuous Forecasting via Neural Eigen Decomposition of Stochastic
Dynamics [47.82509795873254]
We introduce the Neural Eigen-SDE (NESDE) algorithm for sequential prediction with sparse observations and adaptive dynamics.
NESDE applies eigen-decomposition to the dynamics model to allow efficient frequent predictions given sparse observations.
We are the first to provide a patient-adapted prediction for blood coagulation following Heparin dosing in the MIMIC-IV dataset.
arXiv Detail & Related papers (2022-01-31T22:16:50Z) - Integrating Expert ODEs into Neural ODEs: Pharmacology and Disease
Progression [71.7560927415706]
latent hybridisation model (LHM) integrates a system of expert-designed ODEs with machine-learned Neural ODEs to fully describe the dynamics of the system.
We evaluate LHM on synthetic data as well as real-world intensive care data of COVID-19 patients.
arXiv Detail & Related papers (2021-06-05T11:42:45Z) - GLYFE: Review and Benchmark of Personalized Glucose Predictive Models in
Type-1 Diabetes [4.17510581764131]
GLYFE is a benchmark of machine-learning-based glucose-predictive models.
The results of nine different models coming from the glucose-prediction literature are presented.
arXiv Detail & Related papers (2020-06-29T11:34:41Z) - Modeling Shared Responses in Neuroimaging Studies through MultiView ICA [94.31804763196116]
Group studies involving large cohorts of subjects are important to draw general conclusions about brain functional organization.
We propose a novel MultiView Independent Component Analysis model for group studies, where data from each subject are modeled as a linear combination of shared independent sources plus noise.
We demonstrate the usefulness of our approach first on fMRI data, where our model demonstrates improved sensitivity in identifying common sources among subjects.
arXiv Detail & Related papers (2020-06-11T17:29:53Z) - Unsupervised Pre-trained Models from Healthy ADLs Improve Parkinson's
Disease Classification of Gait Patterns [3.5939555573102857]
We show how to extract features relevant to accelerometer gait data for Parkinson's disease classification.
Our pre-trained source model consists of a convolutional autoencoder, and the target classification model is a simple multi-layer perceptron model.
We explore two different pre-trained source models, trained using different activity groups, and analyze the influence the choice of pre-trained model has over the task of Parkinson's disease classification.
arXiv Detail & Related papers (2020-05-06T04:08:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.