論文の概要: Natural Language Processing Methods to Identify Oncology Patients at
High Risk for Acute Care with Clinical Notes
- arxiv url: http://arxiv.org/abs/2209.13860v1
- Date: Wed, 28 Sep 2022 06:31:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 16:03:24.419549
- Title: Natural Language Processing Methods to Identify Oncology Patients at
High Risk for Acute Care with Clinical Notes
- Title(参考訳): 急性期治療のリスクが高い腫瘍学患者を臨床ノートで識別するための自然言語処理法
- Authors: Claudio Fanconi, Marieke van Buchem, Tina Hernandez-Boussard
- Abstract要約: 本研究は, がん患者の急性期治療(ACU)のリスクを明らかにするために, 自然言語処理がいかに有用かを評価するものである。
構造化健康データ(SHD)を用いたリスク予測は標準となっているが、自由テキスト形式を用いた予測は複雑である。
- 参考スコア(独自算出の注目度): 9.49721872804122
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Clinical notes are an essential component of a health record. This paper
evaluates how natural language processing (NLP) can be used to identify the
risk of acute care use (ACU) in oncology patients, once chemotherapy starts.
Risk prediction using structured health data (SHD) is now standard, but
predictions using free-text formats are complex. This paper explores the use of
free-text notes for the prediction of ACU instead of SHD. Deep Learning models
were compared to manually engineered language features. Results show that SHD
models minimally outperform NLP models; an l1-penalised logistic regression
with SHD achieved a C-statistic of 0.748 (95%-CI: 0.735, 0.762), while the same
model with language features achieved 0.730 (95%-CI: 0.717, 0.745) and a
transformer-based model achieved 0.702 (95%-CI: 0.688, 0.717). This paper shows
how language models can be used in clinical applications and underlines how
risk bias is different for diverse patient groups, even using only free-text
data.
- Abstract(参考訳): 臨床ノートは健康記録の重要な構成要素である。
本稿では, 化学療法開始後に急性期医療(acu)のリスクを特定するために, 自然言語処理(nlp)がどのように用いられるかを評価する。
構造化健康データ(SHD)を用いたリスク予測は標準となっているが、自由テキスト形式を用いた予測は複雑である。
本稿では,SHDではなくACUの予測にフリーテキストを用いた手法を提案する。
ディープラーニングモデルは手作業による言語機能と比較された。
結果、SHDモデルでは、SHDを用いたl1-penalized logistic regressionが0.748(95%-CI: 0.735, 0.762)、言語特徴を持つモデルでは0.730(95%-CI: 0.717, 0.745)、トランスフォーマーベースモデルでは0.702(95%-CI: 0.688, 0.717)のC統計結果を得た。
本稿では, 言語モデルが臨床応用にどのように用いられるかを示し, フリーテキストデータのみを用いても, 多様な患者群でリスクバイアスがどう異なるかを明らかにした。
関連論文リスト
- Leveraging Prompt-Learning for Structured Information Extraction from Crohn's Disease Radiology Reports in a Low-Resource Language [11.688665498310405]
SMP-BERTは、自由テキストラジオグラフィーレポートを自動的に構造化データに変換する新しいプロンプト学習法である。
そこで本研究では,SMP-BERTが従来の微調整法をはるかに上回った。
論文 参考訳(メタデータ) (2024-05-02T19:11:54Z) - Leveraging deep active learning to identify low-resource mobility
functioning information in public clinical notes [0.157286095422595]
国際機能・障害・健康分類(ICF)のモビリティ領域に関する最初の公開アノテートデータセット
我々はNational NLP Clinical Challenges (n2c2) 研究データセットを用いてキーワード拡張を用いた候補文のプールを構築する。
最終的なデータセットは,5,511のアクションエンティティ,5,328のモビリティエンティティ,306のアシストエンティティ,639の量子化エンティティを含む,合計11,784のエンティティからなる4,265の文で構成されています。
論文 参考訳(メタデータ) (2023-11-27T15:53:11Z) - Large Language Models to Identify Social Determinants of Health in
Electronic Health Records [2.168737004368243]
健康の社会的決定因子(SDoH)は、患者の結果に重要な影響を与えるが、電子健康記録(EHR)から不完全に収集される。
本研究では,EHRにおける自由テキストからSDoHを抽出する大規模言語モデルについて検討した。
800の患者ノートをSDoHカテゴリーにアノテートし,いくつかのトランスフォーマーモデルを評価した。
論文 参考訳(メタデータ) (2023-08-11T19:18:35Z) - TREEMENT: Interpretable Patient-Trial Matching via Personalized Dynamic
Tree-Based Memory Network [54.332862955411656]
臨床試験は薬物開発に不可欠であるが、しばしば高価で非効率な患者募集に苦しむ。
近年,患者と臨床試験を自動マッチングすることで患者採用を高速化する機械学習モデルが提案されている。
本稿では,TREement という名前の動的ツリーベースメモリネットワークモデルを導入する。
論文 参考訳(メタデータ) (2023-07-19T12:35:09Z) - Clinical Deterioration Prediction in Brazilian Hospitals Based on
Artificial Neural Networks and Tree Decision Models [56.93322937189087]
超強化ニューラルネットワーク(XBNet)は臨床劣化(CD)を予測するために用いられる
XGBoostモデルはブラジルの病院のデータからCDを予測する最良の結果を得た。
論文 参考訳(メタデータ) (2022-12-17T23:29:14Z) - Self-supervised contrastive learning of echocardiogram videos enables
label-efficient cardiac disease diagnosis [48.64462717254158]
心エコービデオを用いた自己教師型コントラスト学習手法であるエコーCLRを開発した。
左室肥大症 (LVH) と大動脈狭窄症 (AS) の分類成績は,EchoCLR の訓練により有意に改善した。
EchoCLRは、医療ビデオの表現を学習する能力に特有であり、SSLがラベル付きデータセットからラベル効率の高い疾患分類を可能にすることを実証している。
論文 参考訳(メタデータ) (2022-07-23T19:17:26Z) - Few-Shot Cross-lingual Transfer for Coarse-grained De-identification of
Code-Mixed Clinical Texts [56.72488923420374]
事前学習型言語モデル (LM) は低リソース環境下での言語間移動に大きな可能性を示している。
脳卒中におけるコードミキシング(スペイン・カタラン)臨床ノートの低リソース・実世界の課題を解決するために,NER (name recognition) のためのLMの多言語間転写特性を示す。
論文 参考訳(メタデータ) (2022-04-10T21:46:52Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
本稿では,新しいコントラスト型正規化臨床分類モデルを提案する。
EHRデータに特化した2つのユニークなポジティブサンプリング戦略を紹介します。
私たちのフレームワークは、現実世界のCOVID-19 EHRデータの死亡リスクを予測するために、競争の激しい実験結果をもたらします。
論文 参考訳(メタデータ) (2021-04-07T06:02:04Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Natural Language Processing with Deep Learning for Medical Adverse Event
Detection from Free-Text Medical Narratives: A Case Study of Detecting Total
Hip Replacement Dislocation [0.0]
人工股関節置換術後の股関節脱臼AEの検出を効率的かつ正確に行うための深層学習ベースNLP(DL-NLP)モデルを提案する。
提案したモデルをML-NLP(ML-NLP)モデルでベンチマークした。
すべてのDL-NLPモデルはML-NLPモデルをすべて上回り、畳み込みニューラルネットワーク(CNN)モデルは全体的なパフォーマンスを最高のものにした。
論文 参考訳(メタデータ) (2020-04-17T16:25:36Z) - Med7: a transferable clinical natural language processing model for
electronic health records [6.935142529928062]
本稿では,臨床自然言語処理のための匿名認識モデルを提案する。
このモデルは、薬物名、ルート、頻度、摂取量、強度、形態、期間の7つのカテゴリを認識するよう訓練されている。
本研究は、米国における集中治療室のデータから、英国における二次医療精神保健記録(CRIS)へのモデル導入可能性を評価するものである。
論文 参考訳(メタデータ) (2020-03-03T00:55:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。