論文の概要: Toward Certification of Machine-Learning Systems for Low Criticality
Airborne Applications
- arxiv url: http://arxiv.org/abs/2209.13975v1
- Date: Wed, 28 Sep 2022 10:13:28 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 16:11:33.785437
- Title: Toward Certification of Machine-Learning Systems for Low Criticality
Airborne Applications
- Title(参考訳): 低臨界航空機用機械学習システムの認定に向けて
- Authors: K. Dmitriev, J. Schumann and F. Holzapfel
- Abstract要約: 機械学習(ML)の空中に浮かぶ応用には、安全クリティカルな機能が含まれる。
現在の航空産業の認定基準はMLルネッサンス以前に開発された。
従来の設計保証アプローチとMLベースのシステムの特定の側面の間には、いくつかの根本的な不整合がある。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The exceptional progress in the field of machine learning (ML) in recent
years has attracted a lot of interest in using this technology in aviation.
Possible airborne applications of ML include safety-critical functions, which
must be developed in compliance with rigorous certification standards of the
aviation industry. Current certification standards for the aviation industry
were developed prior to the ML renaissance without taking specifics of ML
technology into account. There are some fundamental incompatibilities between
traditional design assurance approaches and certain aspects of ML-based
systems. In this paper, we analyze the current airborne certification standards
and show that all objectives of the standards can be achieved for a
low-criticality ML-based system if certain assumptions about ML development
workflow are applied.
- Abstract(参考訳): 近年の機械学習(ML)分野における例外的な進歩は、航空機でこの技術を使うことに大きな関心を集めている。
mlの航空用途には、航空業界の厳格な認証基準に従って開発されなければならない安全クリティカル機能が含まれる。
現在の航空産業の認定基準は、ML技術の詳細を考慮せずにMLルネッサンス以前に開発された。
従来の設計保証アプローチとMLベースのシステムの特定の側面の間には、いくつかの根本的な不整合がある。
本稿では,ML開発ワークフローに関する前提が適用されれば,この基準のすべての目的が低臨界MLベースシステムにおいて達成可能であることを示す。
関連論文リスト
- Runway Sign Classifier: A DAL C Certifiable Machine Learning System [4.012351415340318]
本稿では,空港標識の検出・分類にディープニューラルネットワーク(DNN)を用いた航空機システムの事例研究を行う。
DAL Cを実現するために、冗長かつ異種な2つのDNNを含む確立されたアーキテクチャ緩和手法を用いる。
この研究は、MLベースのシステムの認定課題が、中程度臨界航空機アプリケーションにどのように対処できるかを説明することを目的としている。
論文 参考訳(メタデータ) (2023-10-10T10:26:30Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
機械学習(ML)は、IoT(Internet-of-Things)ベースのスマートグリッドでの使用頻度が高まっている。
電力信号に注入された逆方向の歪みは システムの正常な制御と操作に大きな影響を及ぼす
安全クリティカルパワーシステムに適用されたMLsgAPPの脆弱性評価を行うことが不可欠である。
論文 参考訳(メタデータ) (2023-08-30T03:29:26Z) - Rethinking Certification for Trustworthy Machine Learning-Based
Applications [3.886429361348165]
機械学習(ML)は、非決定論的振る舞いを持つ高度なアプリケーションの実装にますます使われています。
既存の認証スキームは、MLモデル上に構築された非決定論的アプリケーションにはすぐには適用されない。
本稿では、現状の認定制度の課題と欠陥を分析し、オープンな研究課題について論じ、MLベースのアプリケーションのための最初の認定制度を提案する。
論文 参考訳(メタデータ) (2023-05-26T11:06:28Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
自動機械学習(AutoML)ソリューションで手作業で作成したMLパイプラインを置換する可能性を示す。
CRISP-DMプロセスに基づいて,手動MLパイプラインを機械学習と非機械学習に分割した。
本稿では、価格予測の産業利用事例として、ドメイン知識とAutoMLを組み合わせることで、ML専門家への依存が弱まることを示す。
論文 参考訳(メタデータ) (2023-04-28T10:27:38Z) - Improving aircraft performance using machine learning: a review [57.82442188072833]
本稿では,航空宇宙工学の多分野に影響を及ぼす機械学習(ML)の新たな展開について概説する。
我々は、さまざまな航空宇宙分野にまたがるML手法の利点と課題を整理し、技術の現状を概観する。
論文 参考訳(メタデータ) (2022-10-20T07:16:53Z) - How to Certify Machine Learning Based Safety-critical Systems? A
Systematic Literature Review [7.704424642395104]
本稿では,MLに基づく安全クリティカルシステムの認証に関する課題を明らかにすることを目的とする。
総じて、ML認定の主な柱と考えられるトピックをカバーする229の論文を特定した。
論文 参考訳(メタデータ) (2021-07-26T09:03:22Z) - Certification of embedded systems based on Machine Learning: A survey [0.0]
機械学習(ML)の進歩は、アビオニクス領域における機能革新への道を開く。
現在の認定基準とプラクティスは、この新しい開発パラダイムをサポートしていません。
この記事では、規制要件の遵守の実証において、MLの使用がもたらした主な課題の概要について説明する。
論文 参考訳(メタデータ) (2021-06-14T08:12:05Z) - White Paper Machine Learning in Certified Systems [70.24215483154184]
DEEL Project set-up the ML Certification 3 Workgroup (WG) set-up by the Institut de Recherche Technologique Saint Exup'ery de Toulouse (IRT)
論文 参考訳(メタデータ) (2021-03-18T21:14:30Z) - Technology Readiness Levels for Machine Learning Systems [107.56979560568232]
機械学習システムの開発とデプロイは、現代のツールで簡単に実行できますが、プロセスは一般的に急ぎ、エンドツーエンドです。
私たちは、機械学習の開発と展開のための実証済みのシステムエンジニアリングアプローチを開発しました。
当社の「機械学習技術準備レベル」フレームワークは、堅牢で信頼性が高く、責任あるシステムを確保するための原則的なプロセスを定義します。
論文 参考訳(メタデータ) (2021-01-11T15:54:48Z) - Towards a Robust and Trustworthy Machine Learning System Development [0.09236074230806578]
最新のML信頼性と技術に関する最近の調査をセキュリティエンジニアリングの視点から紹介します。
次に、ML実践者のための標準的かつ視覚化された方法で知識の体を表すメタモデルを記述することによって、調査の前後に研究を進めます。
本稿では,堅牢で信頼性の高いMLシステムの開発を進めるための今後の研究方向性を提案する。
論文 参考訳(メタデータ) (2021-01-08T14:43:58Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。