論文の概要: Approach Towards Semi-Automated Certification for Low Criticality ML-Enabled Airborne Applications
- arxiv url: http://arxiv.org/abs/2501.17028v1
- Date: Tue, 28 Jan 2025 15:49:51 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-29 16:42:16.561354
- Title: Approach Towards Semi-Automated Certification for Low Criticality ML-Enabled Airborne Applications
- Title(参考訳): 低臨界ML航空機用半自動認証への取り組み
- Authors: Chandrasekar Sridhar, Vyakhya Gupta, Prakhar Jain, Karthik Vaidhyanathan,
- Abstract要約: 本稿では,低臨界MLシステムを対象とした半自動認証手法を提案する。
主な側面は、システム属性に基づく認証厳格をガイドする構造化分類、評価結果をMLコンポーネントの信頼性測定に集約する保証プロファイル、人間の監視を認証活動に統合するための方法論である。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: As Machine Learning (ML) makes its way into aviation, ML enabled systems including low criticality systems require a reliable certification process to ensure safety and performance. Traditional standards, like DO 178C, which are used for critical software in aviation, do not fully cover the unique aspects of ML. This paper proposes a semi automated certification approach, specifically for low criticality ML systems, focusing on data and model validation, resilience assessment, and usability assurance while integrating manual and automated processes. Key aspects include structured classification to guide certification rigor on system attributes, an Assurance Profile that consolidates evaluation outcomes into a confidence measure the ML component, and methodologies for integrating human oversight into certification activities. Through a case study with a YOLOv8 based object detection system designed to classify military and civilian vehicles in real time for reconnaissance and surveillance aircraft, we show how this approach supports the certification of ML systems in low criticality airborne applications.
- Abstract(参考訳): 機械学習(ML)が航空機に導入されるにつれて、低臨界システムを含むML対応システムは、安全性と性能を確保するための信頼性の高い認証プロセスを必要とする。
航空における重要なソフトウェアに使用されるDO 178Cのような伝統的な標準は、MLのユニークな側面を完全にカバーしていない。
本稿では,データとモデル検証,レジリエンス評価,ユーザビリティ保証に着目し,手動および自動化プロセスを統合した半自動認証手法を提案する。
主な側面は、システム属性に基づく認証厳格をガイドする構造化分類、評価結果をMLコンポーネントの信頼性測定に集約する保証プロファイル、人間の監視を認証活動に統合するための方法論である。
軍事用および民間用車両をリアルタイムに偵察・監視用航空機に分類するために設計されたYOLOv8型物体検出システムを用いたケーススタディを通じて, 本手法が低臨界航空機におけるMLシステムの認証をいかに支援するかを示す。
関連論文リスト
- SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models [75.67623347512368]
MLLMの安全性評価を行うための総合的なフレームワークであるツールンを提案する。
我々のフレームワークは、包括的な有害なクエリデータセットと自動評価プロトコルで構成されています。
本研究では,広く利用されている15のオープンソースMLLMと6つの商用MLLMの大規模実験を行った。
論文 参考訳(メタデータ) (2024-10-24T17:14:40Z) - Highlighting the Safety Concerns of Deploying LLMs/VLMs in Robotics [54.57914943017522]
本稿では,大規模言語モデル (LLMs) と視覚言語モデル (VLMs) をロボティクスアプリケーションに統合する際のロバスト性と安全性に関する重要な課題を強調する。
論文 参考訳(メタデータ) (2024-02-15T22:01:45Z) - Runway Sign Classifier: A DAL C Certifiable Machine Learning System [4.012351415340318]
本稿では,空港標識の検出・分類にディープニューラルネットワーク(DNN)を用いた航空機システムの事例研究を行う。
DAL Cを実現するために、冗長かつ異種な2つのDNNを含む確立されたアーキテクチャ緩和手法を用いる。
この研究は、MLベースのシステムの認定課題が、中程度臨界航空機アプリケーションにどのように対処できるかを説明することを目的としている。
論文 参考訳(メタデータ) (2023-10-10T10:26:30Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
機械学習(ML)は、IoT(Internet-of-Things)ベースのスマートグリッドでの使用頻度が高まっている。
電力信号に注入された逆方向の歪みは システムの正常な制御と操作に大きな影響を及ぼす
安全クリティカルパワーシステムに適用されたMLsgAPPの脆弱性評価を行うことが不可欠である。
論文 参考訳(メタデータ) (2023-08-30T03:29:26Z) - Rethinking Certification for Trustworthy Machine Learning-Based
Applications [3.886429361348165]
機械学習(ML)は、非決定論的振る舞いを持つ高度なアプリケーションの実装にますます使われています。
既存の認証スキームは、MLモデル上に構築された非決定論的アプリケーションにはすぐには適用されない。
本稿では、現状の認定制度の課題と欠陥を分析し、オープンな研究課題について論じ、MLベースのアプリケーションのための最初の認定制度を提案する。
論文 参考訳(メタデータ) (2023-05-26T11:06:28Z) - Benchmarking Automated Machine Learning Methods for Price Forecasting
Applications [58.720142291102135]
自動機械学習(AutoML)ソリューションで手作業で作成したMLパイプラインを置換する可能性を示す。
CRISP-DMプロセスに基づいて,手動MLパイプラインを機械学習と非機械学習に分割した。
本稿では、価格予測の産業利用事例として、ドメイン知識とAutoMLを組み合わせることで、ML専門家への依存が弱まることを示す。
論文 参考訳(メタデータ) (2023-04-28T10:27:38Z) - Toward Certification of Machine-Learning Systems for Low Criticality
Airborne Applications [0.0]
機械学習(ML)の空中に浮かぶ応用には、安全クリティカルな機能が含まれる。
現在の航空産業の認定基準はMLルネッサンス以前に開発された。
従来の設計保証アプローチとMLベースのシステムの特定の側面の間には、いくつかの根本的な不整合がある。
論文 参考訳(メタデータ) (2022-09-28T10:13:28Z) - Joint Differentiable Optimization and Verification for Certified
Reinforcement Learning [91.93635157885055]
安全クリティカル制御システムのためのモデルベース強化学習では,システム特性を正式に認定することが重要である。
本稿では,強化学習と形式検証を共同で行う枠組みを提案する。
論文 参考訳(メタデータ) (2022-01-28T16:53:56Z) - Reliability Assessment and Safety Arguments for Machine Learning
Components in Assuring Learning-Enabled Autonomous Systems [19.65793237440738]
LES(Learning-Enabled Systems)のための総合保証フレームワークを提案する。
次に、ML分類器のための新しいモデルに依存しない信頼性評価モデル(RAM)を提案する。
モデル仮定と、我々のRAMが発見したML信頼性を評価するための固有の課題について論じる。
論文 参考訳(メタデータ) (2021-11-30T14:39:22Z) - Practical Machine Learning Safety: A Survey and Primer [81.73857913779534]
自動運転車のような安全クリティカルなアプリケーションにおける機械学習アルゴリズムのオープンワールド展開は、さまざまなML脆弱性に対処する必要がある。
一般化エラーを低減し、ドメイン適応を実現し、外乱例や敵攻撃を検出するための新しいモデルと訓練技術。
我々の組織は、MLアルゴリズムの信頼性を異なる側面から向上するために、最先端のML技術を安全戦略にマッピングする。
論文 参考訳(メタデータ) (2021-06-09T05:56:42Z) - Manifold for Machine Learning Assurance [9.594432031144716]
本稿では,機械学習(ML)システムにおいて,要求システムを暗黙的に記述した高次元学習データから抽出する機械学習手法を提案する。
その後、テストの精度測定、テスト入力生成、ターゲットのMLシステムの実行時の監視など、さまざまな品質保証タスクに利用されます。
予備実験により, 提案手法により, 試験精度が試験データの多様性を推し進めるとともに, テスト生成手法が故障を防止し, 現実的なテストケースを生み出すことが確認され, 実行時モニタリングは, 対象システムの出力の信頼性を独立的に評価する手段を提供する。
論文 参考訳(メタデータ) (2020-02-08T11:39:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。