論文の概要: Rethinking Certification for Trustworthy Machine Learning-Based
Applications
- arxiv url: http://arxiv.org/abs/2305.16822v4
- Date: Sun, 22 Oct 2023 19:31:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-25 09:01:23.599180
- Title: Rethinking Certification for Trustworthy Machine Learning-Based
Applications
- Title(参考訳): 信頼できる機械学習アプリケーションのための認定の再検討
- Authors: Marco Anisetti and Claudio A. Ardagna and Nicola Bena and Ernesto
Damiani
- Abstract要約: 機械学習(ML)は、非決定論的振る舞いを持つ高度なアプリケーションの実装にますます使われています。
既存の認証スキームは、MLモデル上に構築された非決定論的アプリケーションにはすぐには適用されない。
本稿では、現状の認定制度の課題と欠陥を分析し、オープンな研究課題について論じ、MLベースのアプリケーションのための最初の認定制度を提案する。
- 参考スコア(独自算出の注目度): 3.886429361348165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine Learning (ML) is increasingly used to implement advanced applications
with non-deterministic behavior, which operate on the cloud-edge continuum. The
pervasive adoption of ML is urgently calling for assurance solutions assessing
applications non-functional properties (e.g., fairness, robustness, privacy)
with the aim to improve their trustworthiness. Certification has been clearly
identified by policymakers, regulators, and industrial stakeholders as the
preferred assurance technique to address this pressing need. Unfortunately,
existing certification schemes are not immediately applicable to
non-deterministic applications built on ML models. This article analyzes the
challenges and deficiencies of current certification schemes, discusses open
research issues, and proposes a first certification scheme for ML-based
applications.
- Abstract(参考訳): 機械学習(ML)は、クラウドエッジの連続体で動作する非決定論的振る舞いを持つ高度なアプリケーションの実装にますます使われています。
mlの広範な採用は、アプリケーション非機能プロパティ(フェアネス、ロバスト性、プライバシなど)を信頼性向上のために評価する、保証ソリューションを緊急に求めている。
認証は、政策立案者、規制当局、工業利害関係者によって、この要求に対処するために望ましい保証技術として明確に特定されている。
残念ながら、既存の認証スキームは、MLモデル上に構築された非決定論的アプリケーションにはすぐには適用できない。
本稿では、現状の認定制度の課題と欠陥を分析し、オープンな研究課題について論じ、MLベースのアプリケーションのための最初の認定制度を提案する。
関連論文リスト
- AutoPT: How Far Are We from the End2End Automated Web Penetration Testing? [54.65079443902714]
LLMによって駆動されるPSMの原理に基づく自動浸透試験エージェントであるAutoPTを紹介する。
以上の結果から, AutoPT は GPT-4o ミニモデル上でのベースラインフレームワーク ReAct よりも優れていた。
論文 参考訳(メタデータ) (2024-11-02T13:24:30Z) - SafeBench: A Safety Evaluation Framework for Multimodal Large Language Models [75.67623347512368]
MLLMの安全性評価を行うための総合的なフレームワークであるツールンを提案する。
我々のフレームワークは、包括的な有害なクエリデータセットと自動評価プロトコルで構成されています。
本研究では,広く利用されている15のオープンソースMLLMと6つの商用MLLMの大規模実験を行った。
論文 参考訳(メタデータ) (2024-10-24T17:14:40Z) - Simulation-based Safety Assurance for an AVP System incorporating
Learning-Enabled Components [0.6526824510982802]
テスト、検証、検証 AD/ADASセーフティクリティカルなアプリケーションが大きな課題のひとつとして残っています。
安全クリティカルな学習可能システムの検証と検証を目的としたシミュレーションベースの開発プラットフォームについて説明する。
論文 参考訳(メタデータ) (2023-09-28T09:00:31Z) - MLGuard: Defend Your Machine Learning Model! [3.4069804433026314]
機械学習アプリケーションのコントラクトを指定する新しいアプローチであるMLGuardを提案する。
私たちの仕事は、MLアプリケーションの構築と安全性の監視に必要な、包括的なフレームワークを提供することを目的としています。
論文 参考訳(メタデータ) (2023-09-04T06:08:11Z) - Vulnerability of Machine Learning Approaches Applied in IoT-based Smart Grid: A Review [51.31851488650698]
機械学習(ML)は、IoT(Internet-of-Things)ベースのスマートグリッドでの使用頻度が高まっている。
電力信号に注入された逆方向の歪みは システムの正常な制御と操作に大きな影響を及ぼす
安全クリティカルパワーシステムに適用されたMLsgAPPの脆弱性評価を行うことが不可欠である。
論文 参考訳(メタデータ) (2023-08-30T03:29:26Z) - AdvCat: Domain-Agnostic Robustness Assessment for Cybersecurity-Critical
Applications with Categorical Inputs [29.907921481157974]
敵攻撃に対する堅牢性は、機械学習のデプロイメントにおける重要な信頼の1つだ。
本稿では,ML駆動型サイバーセキュリティクリティカルな幅広いアプリケーションを対象とした,最適かつ高効率な対向ロバスト性評価プロトコルを提案する。
本研究では,ドメインに依存しないロバスト性評価手法を用いて,偽ニュースの検出と侵入検知問題に関する実験を行った。
論文 参考訳(メタデータ) (2022-12-13T18:12:02Z) - Toward Certification of Machine-Learning Systems for Low Criticality
Airborne Applications [0.0]
機械学習(ML)の空中に浮かぶ応用には、安全クリティカルな機能が含まれる。
現在の航空産業の認定基準はMLルネッサンス以前に開発された。
従来の設計保証アプローチとMLベースのシステムの特定の側面の間には、いくつかの根本的な不整合がある。
論文 参考訳(メタデータ) (2022-09-28T10:13:28Z) - Joint Differentiable Optimization and Verification for Certified
Reinforcement Learning [91.93635157885055]
安全クリティカル制御システムのためのモデルベース強化学習では,システム特性を正式に認定することが重要である。
本稿では,強化学習と形式検証を共同で行う枠組みを提案する。
論文 参考訳(メタデータ) (2022-01-28T16:53:56Z) - Trusted Artificial Intelligence: Towards Certification of Machine
Learning Applications [5.7576910363986]
T"UV AUSTRIA Groupは、Johannes Kepler University LinzのInstitute for Machine Learningと協力して、認定プロセスを提案する。
全体的なアプローチは、セキュアなソフトウェア開発、機能要件、データ品質、データ保護、倫理の側面を評価し検証しようとするものである。
監査カタログは教師あり学習の範囲内の低リスクアプリケーションに適用することができる。
論文 参考訳(メタデータ) (2021-03-31T08:59:55Z) - White Paper Machine Learning in Certified Systems [70.24215483154184]
DEEL Project set-up the ML Certification 3 Workgroup (WG) set-up by the Institut de Recherche Technologique Saint Exup'ery de Toulouse (IRT)
論文 参考訳(メタデータ) (2021-03-18T21:14:30Z) - Explanations of Machine Learning predictions: a mandatory step for its
application to Operational Processes [61.20223338508952]
信用リスクモデリングは重要な役割を果たす。
近年,機械学習や深層学習の手法が採用されている。
この分野における説明可能性問題に LIME 手法を適用することを提案する。
論文 参考訳(メタデータ) (2020-12-30T10:27:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。