論文の概要: Score Modeling for Simulation-based Inference
- arxiv url: http://arxiv.org/abs/2209.14249v1
- Date: Wed, 28 Sep 2022 17:08:31 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-29 16:21:16.521071
- Title: Score Modeling for Simulation-based Inference
- Title(参考訳): シミュレーションに基づく推論のためのスコアモデリング
- Authors: Tomas Geffner, George Papamakarios, Andriy Mnih
- Abstract要約: 両手法の利点を享受するシミュレーションベース推論の新しい手法を提案する。
本稿では,個々の観測によって誘導される後続分布のスコアをモデル化し,学習したスコアと対象者のおよそサンプルを効率的に組み合わせたサンプリングアルゴリズムを提案する。
- 参考スコア(独自算出の注目度): 28.422049267537965
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Posterior Estimation methods for simulation-based inference can be
ill-suited for dealing with posterior distributions obtained by conditioning on
multiple observations, as they may require a large number of simulator calls to
yield accurate approximations. Neural Likelihood Estimation methods can
naturally handle multiple observations, but require a separate inference step,
which may affect their efficiency and performance. We introduce a new method
for simulation-based inference that enjoys the benefits of both approaches. We
propose to model the scores for the posterior distributions induced by
individual observations, and introduce a sampling algorithm that combines the
learned scores to approximately sample from the target efficiently.
- Abstract(参考訳): シミュレーションに基づく推論のためのニューラル後方推定法は、正確な近似を得るために多数のシミュレーターコールを必要とするため、複数の観測で条件付けした後続分布を扱うのに不適である。
ニューラルラバース推定法は、自然に複数の観測を処理できるが、その効率と性能に影響を及ぼす別の推論ステップを必要とする。
本稿では,両手法の利点を享受するシミュレーションベース推論手法を提案する。
本研究では,個々の観測結果から得られた後方分布のスコアをモデル化し,学習したスコアを目標からほぼサンプルに効率的に結合するサンプリングアルゴリズムを提案する。
関連論文リスト
- Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
シミュレーションベース推論(SBI)は、入力パラメータを所定の観測に関連付ける後部分布を近似することができる。
本研究では、モデルのパラメータをより正確に推測するために、複数の観測値が利用できる、背の高いデータ拡張について考察する。
提案手法を,最近提案した各種数値実験の競合手法と比較し,数値安定性と計算コストの観点から,その優位性を実証した。
論文 参考訳(メタデータ) (2024-04-11T09:23:36Z) - Score-based Continuous-time Discrete Diffusion Models [102.65769839899315]
連続時間マルコフ連鎖を介して逆過程が認知されるマルコフジャンププロセスを導入することにより、拡散モデルを離散変数に拡張する。
条件境界分布の単純なマッチングにより、偏りのない推定器が得られることを示す。
提案手法の有効性を,合成および実世界の音楽と画像のベンチマークで示す。
論文 参考訳(メタデータ) (2022-11-30T05:33:29Z) - Sequential Neural Score Estimation: Likelihood-Free Inference with Conditional Score Based Diffusion Models [5.1986508753214915]
シミュレーターベースモデルにおけるベイズ推定のためのスコアベース手法である逐次ニューラル後スコア推定を導入する。
このモデルを逐次訓練手順に組み込み、関心の観測における後部の現在の近似を用いてシミュレーションを導出する。
提案手法は, 既存の最先端手法に匹敵する, 優れた性能を示す数値例で, 非逐次的, 非逐次的, 変種性を検証した。
論文 参考訳(メタデータ) (2022-10-10T17:45:37Z) - Coordinated Double Machine Learning [8.808993671472349]
本稿では、ディープニューラルネットワークのための注意深く調整された学習アルゴリズムにより、推定バイアスを低減できると主張している。
シミュレーションデータと実データの両方を用いた数値実験により,提案手法の実証性能が向上したことを示す。
論文 参考訳(メタデータ) (2022-06-02T05:56:21Z) - Sampling from Arbitrary Functions via PSD Models [55.41644538483948]
まず確率分布をモデル化し,そのモデルからサンプリングする。
これらのモデルでは, 少数の評価値を用いて, 高精度に多数の密度を近似することが可能であることが示され, それらのモデルから効果的にサンプルする簡単なアルゴリズムが提示される。
論文 参考訳(メタデータ) (2021-10-20T12:25:22Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
シミュレーションベースの推論は、その可能性が実際に計算できない場合でもモデルのパラメータを学習することができる。
あるクラスのメソッドは、異なるパラメータでシミュレートされたデータを使用して、確率とエビデンス比の償却推定器を推定する。
モデルパラメータとシミュレーションデータ間の相互情報の観点から,本手法が定式化可能であることを示す。
論文 参考訳(メタデータ) (2021-06-03T12:59:16Z) - Score Matched Conditional Exponential Families for Likelihood-Free
Inference [0.0]
Likelihood-Free Inference (LFI) はモデルからのシミュレーションに依存する。
モデルからパラメータシミュレーションペアを観測に基づいて独立に生成する。
重みをスコアマッチングで調整したニューラルネットワークを用いて,条件付き指数関数的家族度近似を学習する。
論文 参考訳(メタデータ) (2020-12-20T11:57:30Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z) - Learning from Aggregate Observations [82.44304647051243]
本研究では,一組のインスタンスに監視信号が与えられる集合観察から学習する問題について検討する。
本稿では,多種多様な集合観測に適合する一般的な確率的枠組みを提案する。
単純な極大解は様々な微分可能なモデルに適用できる。
論文 参考訳(メタデータ) (2020-04-14T06:18:50Z) - On Contrastive Learning for Likelihood-free Inference [20.49671736540948]
Likelihood-freeメソッドは、可能性を評価することができるシミュレータモデルでパラメータ推論を行う。
この可能性のない問題の方法の1つのクラスは、パラメータ観測サンプルのペアを区別するために分類器を使用する。
別の一般的な手法のクラスは、パラメータの後方に直接条件分布を適合させ、特に最近の変種はフレキシブルな神経密度推定器の使用を可能にする。
論文 参考訳(メタデータ) (2020-02-10T13:14:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。